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The results in this appendix are expressed in terms of cost, i.e., the reciprocal of productivity.
It is straightforward to express them in terms of productivity as we do in the main body of
the paper.

D Interpretation of θ

In Section 2 we show that there are two simple statistics that determine when an initial
distribution F (z, 0) belong to the basin of attraction of a balance growth: the curvature θ
and scale λ parameters. These two parameters, together with arrival rate of meetings, α,
fully characterize the growth rate and the stationary distribution of cost in a balance growth
path. Of the two parameters characterizing the initial distribution, θ is asymptotically more
important as it governs the growth rate. This appendix relates the curvature parameter with
the elasticity of CDF at zero, and provide an interpretation for this parameter.

The following result relates θ to the elasticity at 0 of the initial cdf 1− F (z, 0).

Lemma D.1. Suppose that the density of the right cdf F (z, 0) satisfies property (11) for
some θ > 0 and λ > 0. Then

lim
z→0

f(z, 0)z

1− F (z, 0)
=

1

θ
.

Proof: Rearranging equation (11) we obtain

λ = lim
z→0

θ
1− F (zθ, 0)

z

f(zθ, 0)zθ

1− F (zθ, 0)

= θ lim
z→0

1− F (zθ, 0)

z
lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)

= θ lim
z→0

θf(zθ, 0)zθ−1 lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)

= θλ lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)
.

The second but last equality follows from applying l’Hospital’s rule to the first limit, and the
last equality follows from condition (11). Thus, the desired result follows from the last line.
�

The following Lemma provides an interpretation of θ as a measure of the relative concen-
tration of arbitrarily low costs in two distributions.

Lemma D.2: Let 1− F1(z) and 1− F2(z) be two cdf with continuous and strictly positive
elasticity at 0, i.e., limz→0 εi(z) = εi(0) > 0, and ε1(0) = 1/θ1 < ε2(0) = 1/θ2 (θ1 > θ2). Then

lim
z→0

1− F2(z)

1− F1(z)
= lim

z→0

f2(z)

f1(z)
= 0.
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Proof: Using the definition of the elasticity we can write the cdf and density functions as

1− Fi(z) = [1− Fi(z̄)] exp

[
−
∫ z̄

z

εi(y)

y
dy

]
.

and

fi(z) = [1− Fi(z̄)]
εi(z)

z
exp

[
−
∫ z̄

z

εi(y)

y
dy

]
.

Therefore, we can express the ratio between the first and second density functions as

f2(z)

f1(z)
=

1− F2(z̄)

1− F1(z)

ε2(z)

ε1(z)
exp

[
−
∫ z̄

z

ε2(y)− ε1(y)

y
dy

]
.

From the continuity of εi(z) and the fact that ε2(0) − ε1(0) > 0 we know that for z̄ close
to zero there exist ε, 0 < ε ≤ ε2(0) − ε1(0), such that ε2(z) − ε1(z) ≥ ε for all 0 < z ≤ z̄.
Therefore, for all z ≤ z̄

f2(z)

f1(z)
≤ 1− F2(z̄)

1− F1(z)

ε2(z)

ε1(z)
exp

[
−
∫ z̄

z

ε

y
dy

]
=

1− F2(z̄)

1− F1(z)

ε2(z)

ε1(z)

(z
z̄

)ε
,

and since fi(z) ≥ 0, i = 1, 2,

lim
z→0

f2(z)

f1(z)
= 0.

By l’Hopital rule, this also implies that

lim
z→0

1− F2(z)

1− F1(z)
= 0.

�

E Example of Non-Convergent Initial Distributions

There are, of course, initial distributions that generate paths that do not converge in the
sense define in Section 2: any distribution with a support that is bounded away from 0, for
example. A log normal F (., 0) has an elasticity of 1 − F (., 0) that converges to ∞ and so
Lemma D.1 implies θ = 0. In this case, the economy does not have a balanced growth path
with strictly positive growth. In the opposite extreme, an example of a distribution with an
elasticity converging to zero is

1− F (z, 0) = exp

[
−
∞∑
i=1

(
β

δ

)i (
1− zδi

)]
, z ∈ [0, 1], 0 < δ < β < 1.
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The elasticity of 1 − F (z, 0) equals
∑∞

i=1 β
izδ

i
, and therefore, it tends to 0 as z → 0. In

this case the economy does not have a balanced growth path since the growth rate will be
increasing without bound as time passes.

Initial distributions with a strictly positive elasticity at zero but that fail to satisfy (11)
can also be constructed. One example is

1− F (z, 0) = z exp

[
−
∞∑
i=1

(
β

δ

)i (
1− zδi

)]
, z ∈ [0, 1], 0 < δ < β < 1.

The elasticity of 1−F (z, 0) equals 1+
∑∞

i=1 β
izδ

i
, and therefore tends to 1 as z → 0, but this

cdf does satisfy condition (11). In this case, limz→0(1−F (zθ, 0))/z = 0 (∞) for all θ ≤ (>)1,
which implies that condition (11) is not satisfied for any θ.

F Partial Converse to Lemma D.1

Can the conditions for an initial distribution to belong to the basin of attraction of a balance
growth path be express solely in terms of the behavior of the elasticity around zero? We
restrict the set of initial conditions so that if they have a bounded elasticity then they satisfy
(11). Consider the class of initial c.d.f. whose elasticity on the neighborhood of zero can be
written as a sum of power functions, i.e.,

ε(z) ≡ f(z, 0)z

1− F (z, 0)
= e0 +

∞∑
i=1

ei z
ξi + o(z) (F.1)

where ξi > 0 and limz↓0
o(z)
z
→ 0.1

The follow result provides a partial converse to Proposition 3, as it provides a sufficient
condition for a initial distribution with strictly positive and finite elasticity to converges to
a balance growth path as defined in (10).

Proposition F.1 Assume that the initial c.d.f. F (z, 0) has elasticity of the form given by
(F.1), with

∑∞
i=1 |

ei
ξi
| = A <∞. Then, F (z, 0) satisfies condition (11).

Proof. Define H(x) = F (xθ, 0), where θ = 1/e0. Let 0 ≤ x < x̄ < 1 closed enough to 0.

1This class includes the cases in which ε(z) is differentiable at 0 (set ξi ≥ 1 for all i), as well as many
other cases where it is not differentiable, such as ε(z) = e0 +

√
z.
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Integrating the equation defining the elasticity of H(x) between x and x̄ we obtain

H(x) = H(x̄) exp

[
−
∫ x̄

x

ε(t)/ε(0)

t
dt

]
= H(x̄) exp

[
−
∫ x̄

x

1 + 1
ε(0)

[∑∞
i=1 ei t

ξi + o(t)
]

t
dt

]

= H(x̄)
x

x̄
exp

[
− 1

ε(0)

∫ x̄

x

∞∑
i=1

ei t
ξi−1dt− 1

ε(0)

∫ x̄

x

o(t)

t
dt

]
.

where the second equality follows from the definition of a regular elasticity. Rearrenging,

H(x)

x
=

H(x̄)

x̄
exp

[
− 1

ε(0)

∫ x̄

x

∞∑
i=1

ei t
ξi−1dt

]
exp

[
− 1

ε(0)

∫ x̄

x

o(t)

t
dt

]

=
H(x̄)

x̄
exp

[
− 1

ε(0)

[∫ x̄

x

∑
i∈pos

ei t
ξi−1dt−

∫ x̄

x

∑
i∈neg

|ei| tξi−1dt

]]

exp

[
− 1

ε(0)

∫ x̄

x

o(t)

t
dt

]
(F.2)

where pos = {i : ei ≥ 0} and neg = {i : ei < 0}. We notice that each of the integrals inside
the first exponential increase when we lower x, as we are integrating a positive function over
a larger range. Moreover, these two integrals are bounded, i.e.,∫ x̄

x

∑
i∈pos

ei t
ξi−1dt ≤

∫ x̄

x

∞∑
i=1

|ei| tξi−1dt

≤ lim inf
n→∞

∫ x̄

x

n∑
i=1

|ei| tξi−1dt

= lim inf
n→∞

n∑
i=1

|ei
ξi
|
[
x̄ξi − xξi

]
≤

∞∑
i=1

|ei
ξi
| = A <∞

where the first inequality follows from Fatou’s Lemma, the second equality follows from inte-
gration, and the last inequality follows from the definition of a regular elasticity and the fact
that 0 < x < x̄ ≤ 1. Similar arguments can be applid to show that the second integral inside
of the first exponential is bounded. Finally, the absolute value of the argument of the second
exponential is uniformly bounded for x̄ small enough, i.e., |

∫ x̄
0
o(t)
t
dt| ≤ B <∞. Since all the

integrals in the right hand side of (F.2) are monotone and bounded, they converge to a finite
limit. This proves that 0 < limx→0H

′(x) = limx→0H(x)/x = limx→0 θx
θ−1f(xθ, 0) < ∞,

which is equivalent to (11) as Lemma D.1 shows. �
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G Alternative Definition of a Balance Growth Path

For completeness, we characterize the asymptotic behavior of initial distributions that do not
satisfy the conditions of Proposition F.1. While these initial distributions do not converge to
a balance growth path as define in (10), they converge to a balance growth path in a weaker
sense as stated in the following proposition.

Proposition G.1 Assume that the initial cdf 1 − F (z, 0) has an elasticity that is contin-
uous, strictly positive, and finite at zero equal 1/θ. Let the q(t) be the qth quantile of the
distribution F (z, t), i.e.,

F (d(t), t) = exp
[
log [F (q(t), 0)] eαt

]
= 1− q. (G.1)

Then, the distribution of cost normalized by the qth quantile converges to a Weibull with
parameters θ and λ = e1−q, i.e.,

lim
t→∞

F (z q(t), t) = exp
(
−λz1/θ

)
. (G.2)

and the qth quantile of the cost distribution decreases at an asymptotically constant rate α/θ,
i.e.,

lim
t→∞

1

q(t)

∂q(t)

∂t
= −α

θ
. (G.3)

The proof of this Proposition uses the following Lemma.

Lemma G.2: If the cdf 1−F (z, 0) has an elasticity that is continuous, strictly positive, and
finite at zero equals to ε(0), then

lim
z→0

F ′(kx, 0)

F ′(x, 0)
= kε(0)−1, for all k > 0.

Proof: Using the definition of the elasticity and letting k < 1 (a similar argument applies
for the case k > 1)

F ′(kz, 0)

F ′(z, 0)
=

1

k

ε(kz)

ε(z)
e−

∫ z
kz

ε(u)
u
du.

From the continuity of the elasticity we know that for every ς there exist a z such that
ε(0)− ς ≤ ε(u) ≤ ε(0) + ς for all u < z. Therefore,

kε(0)+ς−1 ≤ F ′(kz, 0)

F ′(z, 0)
≤ kε(0)−ς−1.

Since ς can be made arbitrarily small, we obtain the desired result. �
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Proof of Proposition G.1. Taking the limit as t→∞ in both sides of equation (G.2)

lim
t→∞

F (z q(t), t) = lim
t→∞

exp
[
log(F (z q(t), 0))eαt

]
= exp

[
lim
t→∞

F ′(z q(t), 0)z q′(t)

−αe−αt

]
= exp

[
lim
t→∞
−e1−qF

′(z q(t), 0)

F ′(q(t), 0)
z

]
= exp

(
−λz1/θ

)
,

where the third equality uses that q′(t) = α log [F (q(t)]F (q(t), 0)/F ′(q(t), 0), which itself
follows from applying the implicit function theorem to equation (G.1), and the last equality
follows from the following Lemma. Finally, we derive equation (G.3)

lim
t→∞

∂q(t)
∂t

q(t)
= lim

t→∞

α log(F (q(t),0)F (q(t),0)
F ′(q(t),0)

q(t)

= −α lim
t→∞

log(F (q(t), 0)

1− F (q(t), 0)

(
1− F (q(t), 0)

−F ′(q(t), 0)q(t)

)
= −α

θ
,

where the first equality follows from applying the Implicit Function Theorem to equation
(G.1), and the last equality following from L’Hopital rule to the first term and the fact that
the elasticity at zero of the c.d.f. equals 1/θ. �

This result describes the asymptotic behavior of economies whose initial distribution of
cost has a strictly positive and finite elasticity at zero but do not satisfy the condition in
Proposition F.1, e.g., the distribution in last example described in Section E. Proposition
G.1 shows that in these economies costs decrease asymptotically at a constant rate α/θ.
Nevertheless, in these economies the distribution of costs normalized by a constant growth
factor, e

α
θ
t, is asymptotically degenerate. What happens in this example is that along most

of the transition costs decrease a rate that is bounded away from α/θ.
Notice that Proposition G.1 is very related to results in the mathematical statistic liter-

ature on extreme distributions. In particular for the maximum of an infinite sequence of iid
variables with finite upper bound. In that case the conditions on the elasticity is essentially
the same as the von Mises condition, and the invariant distribution is Weibull. See, for ex-
ample, Theorem 3.3.12 of Embrechts et al. (2003). Yet our result in Propositions 1, 2 and
G.1 are different in an important way from the standard results in extreme distributions. In
our set-up we obtain geometric growth, while, in the language of the extreme distributions,
the standard result is a linear norming constraint, or linear growth in term of economics.
Indeed the standard set-up in the mathematical statistical literature is closer to the set-up in
economic models of diffusion of technologies with an exogenous idea source, such as the one
by Kortum (1997). In these type of models there is no growth asymptotically. Furthermore,
since in our framework there is growth asymptotically we need to focus in a stronger notion
of convergence. This leads to a smaller set of initial distribution that are stable, i.e., those
satisfying condition (11).
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H Alternative Calibration Strategies

Instead of using information on trade elasticities to calibrate θ, we could use data on the dis-
tribution of productivity or the size distribution of establishments or firms. These strategies
would be more natural for the extension with Bertrand competition discussed in Appendix
I.

First, since we show above that asymptotically z is Frechet distributed, then log(z),
the log of productivity, has standard deviation equal to θπ/

√
6, see chapter 3.3.4 of Rinne

(2008). Hence we can take measures of dispersion of (log) productivity to calibrate θ. The
dispersion of (log) productivity range from 0.6− 0.75 when measured as the value-added per
worker – see Bernard et al. (2003) Table II – and around 0.8 when measures of physical total
factor productivity are obtained using data on value-added, capital and labor inputs, and
assumptions about the demand elasticities – see Hsieh and Klenow (2009) Table I, dispersion
of TFPQ.2 These numbers suggest a value for θ in the range [0.5, 0.6].

Second, using that productivity is asymptotically distributed Frechet, and that the tail
of the Frechet behaves as that of a Pareto distribution with tail coefficient 1/θ, we can
use data on the tail of the distribution of productivity to directly infer θ. Lacking direct
information on physical productivities, we can use information on the tail of the distribution
of employment, together with a value for the elasticity of demand.3 The tail of the size
(employment) distribution of firms is approximately equal to 1.06 – see Figure 1 in Luttmer
(2007). Therefore for the values of demand elasticities typically considered in the literature,
say η ∈ [3, 10], (see Broda and Weinstein (2006), Imbs and Mejean (2010), or Hendel and
Nevo (2006)) it would imply a value for θ in the range [0.1, 0.5].

I Bertrand Competition

We consider a world economy with many locations per country, but a single producer per
location, following the extension with many locations described in Appendix C. In this case
perfect competition does not provide a natural benchmark. Instead we assume that producers
engage in Bertrand competition: in each location the seller of each good s is still going to be
the lowest cost producer, but will now charge the minimum between the cost of the second
lowest cost producer and the monopolist price.

This extension has become popular in the trade literature (Bernard et al., 2003). First,
it provides a simple model where the size of a firm is determined, and therefore, the theory
has implications for the size distribution of firms. More recently, the literature has studied
the effect of trade policy on the distribution of market and the pro-competitive gains from
trade, and have stressed the importance of assumptions on the distribution of productivities
to determine their magnitude (Arkolakis et al., 2012; Holmes et al., 2012).

To simplify the analysis we are going to assume that there are the same number of location
in each country, i.e., mi = m, and that locations are symmetric within each country, i.e.,

2Using data for eleven products for which direct measures of physical output are available Haltiwanger
et al. (2008) calculate true measures of physical total factor productivity. They find that the dispersion of
(log) true physical productivity is 20% higher than that measured using just value-added information.

3The CES structure implies that employment at industry/firm with cost x satisfies l(z) ∝ (1/z)η−1.
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Fi,l(z, t) = Fi,l′(z, t). Thus, for each good s there are mn potential producers that have
generically heterogeneous cost. Because prices in Bertrand competition depends also on the
second lowest cost producer, we enlarge the profile of cost of a good s to include the cost of
all locations across all countries z = (z1,1, ..., zi,l, ..., zn,m).

As before we let pi(z, t) be the price paid for good z in country i at t. Bertrand competition
implies that

pi(z, t) = min
(j,l)

min

{
η

η − 1

wj(t)

κij
zjl, min

(j′,l′)6=(j,l)

{
wj′(t)

κij′
zj′l′

}}
,

where the minimization is over all countries and locations pairs (j, l), and for each country
pair we minimize between the monopolist price and the second lowest limit price. As was
the case with perfect competition, the price index pi must be calculated country by country.

Consumption of good z in country i equals

ci(z) =

(
pi
pi(z)

)η
Ci =

(
pi
pi(z)

)η
wiLi + πi

pi
.

where πi are the profits of firms in country i. The first equality follows from individual
maximization and the second follows from the budget constraint piCi = wiLi + πi since we
have assumed that trade is balanced in each period.

The definition of equilibrium is standard. As in the competitive case to find an equilibrium
we need to find a vector of wages w = (w1, ..., wn) for which the implied demand for labor is
equal to the inelastically given supply for each country. While the derive demand for labor
is similar, it now reflects the fact that individual prices are different and profits are positive.
In particular, the solution of an equilibrium boils down to find the wage vector w for which
the excess derived demand equals zero, Z(w) = 0. As in the case with perfect competition,
the price index pi must be calculated country by country,

p1−η
i =

∫
pi(z)1−ηf(z)dz

=
∑
(j,l)

∫ ∞
0

[ ∑
(j′,l′) 6=(j,l)

∫ aijj′m̄zjl

aijj′zjl

(
zj′l′wj′

κij′

)1−η

fj′l′(zj′l′)

×
∏

(j′′,l′′) 6=(j,l),(j′,l′)

Fj′′l′′ (aij′j′′zj′l′) dzj′l′

+

(
m̄
zjlwj
κij

)1−η ∏
(j′,l′)6=(j,l)

Fj′l′ (m̄aijj′zjl)

]
fjl(zjl)dzjl

where we first sum over the source country and location pairs (j, l) and then we integrate
over the cost of the source country and location pairs zjl. The first term inside of the integral
considers the goods for which the price is determined by the cost of the second lowest cost
source (j′, l′) 6= (j, l),

zj′l′wj′

κij′
≤ m̄

zjlwj
κij

, where m̄ denotes the monopolistic markup, which

equals η
η−1

if η > 1 or∞ otherwise. The second term corresponds to the goods for which the

lowest cost source can charge the monopolist price, m̄
wjzj
κij

.
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The expression for the excess derived demand for labor of country i equals

Zi(w) =
m∑
l=1

n∑
j=1

∫ ∞
0

[ ∑
(j′,l′)6=(i,l)

∫ ajij′m̄zil

ajij′ zil

(
κjj′pj
wj′zj′l′

)η
fj′(zj′l′)

×
∏

(j′′ ,l′′ )6=(j′,l′),(i,l)

Fj′′
(
ajj′j′′ zj′l′

)
dzj′l′

+

(
κjipj
m̄zilwi

)η ∏
(j′ ,l′ )6=(i,l)

Fj′
(
m̄ajij′zil

) ]wjLj + πj(w)

pj

zil
κji
fi(zil) dzil − Li.

where, for a given w, the profits πi are the solution of the following linear system of equations

πi(w) =
m∑
l=1

n∑
j=1

∫ ∞
0

[ ∑
(j′,l′)6=(i,l)

∫ a
jij
′ m̄zil

a
jij
′ zil

(
wj′zj′ l′

κjj′
− wizil

κji

)(
κjj′pj

wj′zj′ l′

)η

fj′ (zj′ l′ )

×
∏

(j
′′
,l
′′

)6=(j
′
,l
′
),(i,l)

Fj′′
(
ajj′j′′ zj′ l′

)
dzj′ l′

+(m̄− 1)
wizil
κji

(
κjipj
m̄zilwi

)η ∏
(j′ ,l′ )6=(i,l)

Fj′
(
m̄ajij′zil

) ]wjLj + πj(w)

pj
fi(zil) dzil.

I.1 Quantitative Exploration

We explore the robustness of the welfare results presented in Figure 2 using the Bertrand
competition model described in this Appendix. We analyze a case of 25 symmetric countries,
each with two locations, and set all the other parameters to be same as in the economy with
perfect competition. We compare the economy with Bertrand competition with an economy
with 25 symmetric countries, each with two locations, in which we assume that producers
behave competitive.

In Figure I.1 we present three panels. In each panel the y-axis shows the ratio of per-capita
income in the economy with Bertrand competition relative to the per-capita income in the
perfectly competitive economy. In the x-axis we vary the common value of κ. We show these
effects for different values of the paramete η, which controls the elasticity of substitution.
The first two panels consider the impact effect, before any diffusion of technology has taken
place. The last panel consider the long-run effect. The initial distribution used to calculate
all the examples in the three panels has the same θ and λ. We denote by κ0 the trade
cost associated with the initial distribution. In the first panel the initial distribution is the
stationary distribution for the case of costless trade, κ0 = 1, which is Frechet. In the second
panel the initial distribution is the stationary distribution of an economy with κ0 = 0.5,
which as shown in Figure 1 deviates significantly from Frechet. The value of κ0 is irrelevant
for the last panel.
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Figure I.1: Comparison of the effect of trade costs in Bertrand competition relative to perfect
competition.
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J Poisson Arrival of Ideas

In this section we explore the implications of a version of our model with Poisson arrival of
ideas. As shown in Alvarez et al. (2008), in the Poisson case the evolution of the distribution
of productivity (the inverse of cost) of country i solves

∂ log(Fi(z, t))

∂t
= −α [1−Gi(z, t)] . (I.1)

where

Gi(z, t) =
n∑
j=1

∫ z

0

fj(y, t)
∏
k 6=j

Fk

(
wkκij
wjκik

y, t

)
dy. (I.2)

The following proposition characterizes the balance growth path of a symmetric world econ-
omy with costless trade.

Proposition A.5: Assume that ideas arrive with a Poisson process with intensity α from
the distribution of sellers to a country. For each country i = 1, ..., n, Fi(z, 0) = F (z, 0) with
density satisfying

lim
z→∞

f(z, 0)
1
θ
z−

1
θ
−1

= λ. (I.3)

Then, the steady state distribution for each country is

lim
t→∞

F
(
eν tz, t

)
=

1(
1 + nλz−

1
θ

)1/n
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and the growth rate in a balance growth path

ν = nαθ.

Proof: Specializing equation (I.2) for the case of symmetric countries and substituting into
(I.1)

∂ log(F (z, t))

∂t
= −α [1− F (z, t)n] .

Multiplying and dividing the left hand side by n

n

n

∂ log(F (z, t))

∂t
= −α [1− F (z, t)n]

1

n

∂ log(F (z, t)n)

∂t
= −α [1− F (z, t)n]

Defining H(z, t) = F (z, t)n

∂ log(H(z, t))

∂t
= −nα [1−H(z, t)]

The solution of this equation is

H(z, t) =
1

1−H(z,0)
H(z,0)

enαt + 1

Defining the detrended productivity x = ze−νt and taking the limit as t→∞

lim
t→∞

H(xeνt, t) = lim
t→∞

1
1−H(xeνt,0)
H(xeνt,0)

enαt + 1

=
1

limt→∞
1−H(xeνt,0)

(xeνt)−
1
θ

(xeνt)−
1
θ enαt + 1

Using assumption (I.3), l’Hopital’s rule, and that H(z, t) = F (z, t)n

lim
z→∞

1−H(z, 0)

z−
1
θ

= lim
z→∞

1− F (z, 0)n

z−
1
θ

= lim
z→∞

nF (z, 0)n−1f(z, 0)
1
θ
z−

1
θ
−1

= n lim
z→∞

f(z, 0)
1
θ
z−

1
θ
−1

= nλ.

Using this we obtain

lim
t→∞

H(xeνt, t) =
1

nλx−
1
θ limt→∞ e

(nα− ν
θ

)t + 1

12



From the last expression it follows that, in order for the right hand side not to imply a
degenerate distribution, ν = nαθ. In this case, the stationary distribution equals

lim
t→∞

H(xeνt, t) =
1

nλx−
1
θ + 1

.

Finally, using that F (z, t) = H(z, t)
1
n we obtain

lim
t→∞

F (xeνt, t) = lim
t→∞

H(xeνt, t)
1
n

=
1(

1 + nλx−
1
θ

) 1
n

.

�
It is interesting that the stationary distribution for the case of a Poisson process is a

function of the number of countries n. In contrast, when ideas arrive at a deterministic rate
α, the stationary distribution of productivity of each of the symmetric countries is a Frechet
independent of n:

lim
t→∞

F (xeν t, t) = e−λx
− 1
θ .

13
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