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Abstract
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The progress of a society is all the more rapid in proportion
as it is more completely subjected to external influences.

— Henri Pirenne

1 Introduction

In this paper we provide a theoretical description of a process of endogenous technology

diffusion which we use to study the effects of trade barriers on productivity. Our theory

complements the classical insights from international trade theories, in which gains from

trade are due to re-allocation of resources using the same technology. Yet, we provide a

model in which, as is widely and reasonably believed, trade serves as a vehicle for technology

diffusion.

Our starting point is a static trade model. For concreteness we follow the framework in

Eaton and Kortum (2002) and Alvarez and Lucas (2007), EK-AL for short. In this model

(as in many others) freer trade replaces inefficient domestic producers with more efficient

foreign producers.1 We add to this familiar, static reallocation effect a theory of endogenous

growth in which people get new, production-related ideas by learning from the people they

do business with or compete with. The novel feature that we introduce is that trade put

domestic producers in contact with the most efficient (subject to trade costs) foreign and

domestic producers from which they can learn and improve their technologies. For a given

country this effect is in addition to the traditional gains steaming from the reallocation of

resources using the same set of available technologies. The identification and analysis of these

selection and learning effects is the new contribution of the paper.

Though constructed from familiar components, our model has a rich, somewhat novel

structure, and it will be helpful to introduce enough notation to describe this structure before

outlining the rest of the paper. There are n countries, i = 1, ..., n, with given populations

Li and given iceberg trade costs, κij. There are many goods produced in each country. The

productivity of any good produced in i will be modeled as a draw from a country-specific

probability distribution, defined by its cdf

Fi(z) = Pr{productivity in i of good drawn at random ≤ z}.

We treat populations and trade costs as parameters and analyze the dynamics of the tech-

nology profiles F = (F1, ..., Fn) that serve as the state variables of the model. There are two

1Reallocation effects with a fixed technology are not only featured in Ricardian models, but also in the
traditional Heckscher-Ohlin model, and the New Trade Theory started by Krugman (1979), including the
newer developments such as Melitz (2003).
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steps in this analysis.

Given a profile F together with populations and trade costs we define a static compet-

itive equilibrium for the world economy. We use the static model of international trade to

determine the way a given technology profile F defines a pattern of world trade, including

listings of which sellers in any country are domestic producers or exporters from abroad.

The second step in the analysis is based on a model of technology diffusion that involves

stochastic meetings of individual people—we call them product managers— who exchange

production-related ideas. We use a variation on the Kortum (1997) model, as developed in an

earlier working paper version (Alvarez et al., 2008). In this diffusion model, product managers

in country i meet managers from some source distribution Gi at a given rate αi and improve

their own knowledge whenever such meetings put them in contact with someone who knows

more than they do. In our application, this source distribution Gi is the technology profile of

the set of sellers of any good who are active in country i, as determined by the trade theory

applied in step 1. Under autarchy, then, the source distribution is simply the distribution

Fi of domestic producers.2 Trade improves on this source distribution by replacing some

inefficient domestic sellers with more efficient foreigners, replacing Fi with a distribution Gi

that stochastically dominates it, at least for high productivities. It is this selection effect

that provides the link between trade volumes and productivity growth that we are seeking.

Technically, trade theory provides a map from a technology profile F to a profile G =

(G1, ..., Gn) of source distributions. The diffusion model gives us a map from each pair (Fi, Gi)

into a rate of change ∂Fi(x, t)/∂t. Combining these two steps yields a law of motion for the

technology profile F of all n countries together.

The organization of the rest of the paper is as follows. Section 2 introduces our model

of technological change in the context of a closed economy, which will be later reinterpreted

as a model of the entire world. For this case we present a complete characterization of

the dynamics of a single economy that introduces many features that will be important in

understanding the more general case. Section 3 characterizes the competitive static trade

theory that maps an arbitrary technology profile F into a pattern of world trade. Section 4

then integrates the dynamics of technological change and static equilibrium implied by trade

theory. We characterize the balanced growth path for a world economy and full dynamics of

the right tail of the productivity distributions under constant trade costs and populations.

This section includes a characterization of cases where trade costs have substantial effects on

the stationary distribution, relative income, and the volume of trade, relative to the static

trade theory of EK-AL. It also gives results for the case of costless trade. As we could predict

on the basis of the static trade theory alone, a full analytical characterization of the dynamics

2Kortum (1997) calls this distribution the technology frontier.
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in the general case is not a possibility, so we continue with numerical results.

In Section 5 we carry out some quantitative explorations to illustrate the effects of trade

costs on income levels and growth rates. We calculate equilibrium paths for a symmetric

world economy under different trade paths and compare the static and dynamic effects of

tariff reductions in this context. We then consider catch-up growth when a small, poor, open

economy is introduced into the otherwise symmetric world. These results are illustrated

graphically. Section 6 provides a brief discussion of some substantive conclusions suggested

by these exercises and of directions for future work that they suggest. Finally, in an Online

Appendix we outlines a version of the model with Bertrand competition, and show numerical

results for this alternative model.

Before continuing, we present a brief summary of the main results in the paper, and an

overview of the related literature.

Preview of the Results This section review the main theoretical results, organizing them

conceptually rather than in the order they are presented in the paper.

The initial conditions are given by the distribution of productivities Fi(·, 0). These govern

all future behavior in our deterministic model. Their tail behavior can be characterized by

level and curvature parameters, λi and θi respectively. In particular, θi is a measure of the

concentration of firms in country i with very high productivities. Trade among countries leads

to the immediate convergence across countries of the curvature of the tail to the common value

θ, the maximum of the θi values in all n economies. Despite the continuous evolution of the

distributions Fi through time this common tail parameter θ remains constant. [Propositions

1, 2, 7 and 8]

Under natural assumptions, the distributions of productivities, consumption and GDP

converge to a unique balanced growth path with a common growth rate ν. The rate ν is

given by the product of the sum of the countries’ meeting rates,
∑

i αi and the common tail

parameter θ. Increases in the search efforts ai or in the concentration θ of high productivities

both stimulate faster growth. The model features a form of scale effect on growth. Adding

more countries to the world in a way that enlarges the initial set of best practices increases the

world growth rate, while arbitrarily partitioning a country into subregions leaves everything

in the world unaltered. [Proposition 1, 2, 7 and discussion in Appendix C]

As with the case of the curvature parameter, the paths of the level parameters λi(t) are

independent of trade costs, as long as they are finite. Trade costs do not affect the diffusion

of extremely productive technologies—which are the ones determining tail behavior—since

for them productivity over-rides cost considerations. But in general trade costs do affect

the diffusion of technologies, and higher trade costs imply that some more efficient foreign
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producers are replaced by inefficient domestic producers. This reduces per-capita income

levels. [Propositions 8, 10 and 11, and figures 2 and 3.]

Both the effects of trade costs on output and the volume of trade depend on the elasticity

of substitution across products, η. This parameter determines the weight that is given to

goods from the left tail of the distribution of productivity. As η increases towards a critical

value, expenditures become concentrated on goods with higher productivities. In this case,

the behavior of trade volume and relative output on the model approaches the EK-AL Frechet

case. [Proposition 9]

Our model has considerable flexibility because equilibrium wages are the only feature

of the static trade theory that is relevant in determining the distribution of sellers in each

country. No other feature of the equilibrium trade model is required to determine the diffusion

of productivity. In particular, as we show in the Online Appendix, one can easily change the

trade model from a competitive equilibrium to a Bertrand competition and retain tractability.

Related Literature We build on previous work on both trade and growth. We consider

both perfect competitive setups from Eaton and Kortum (2002) and Alvarez and Lucas

(2007), and the case with Bertrand competition as in (Bernard et al., 2003), Arkolakis et al.

(2012), Holmes et al. (2012). We differ from these papers in that we allow for a more general

distribution of productivities.

Our work is closely related to a number of papers on endogenous growth theory. Kortum

(1997) considers a model of a closed economy in which innovators spend resources to draw

ideas from an exogenous distribution of potential technologies. Unlike our model, innovators

do not learn form other producers, but instead they learn form a set of exogenous ideas not

embodied in goods, and thus there are no external effects. Yet the mathematical setup from

which innovators learn best practices from disembodied exogenous ideas is similar to the

one that producers in our set up use to learn from ideas currently embodied in goods. The

derived stationary distribution of productivities is Frechet, but in their model there is no

long-run growth unless there is population growth. We abstract from innovation, but allow

for the diffusion of existing technologies across sectors and countries, and obtain a model

with endogeous growth.

Eaton and Kortum (1999) extends the analysis in Kortum (1997) by considering innova-

tion and diffusion of technologies in a world economy populated by heterogeneous countries.

They assume exogenous rate of diffusion of ideas across countries, but they abstract from

trade. Among other things, they show that their mechanism produces a Frechet distribution

of productivity. Instead we consider an explicit channel for the diffusion of ideas, i.e., the

interaction with foreign sellers in a country. In our model the diffusion of ideas is determined
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by trade barriers, and other variables governing trade flows.

Luttmer (2012) extends his work on growth driven by innovators with heterogenous pro-

ductivities and imitation by entrants. Luttmer (2007) considers imitation of incumbants,

which is closely related to our mechanism for growth. His interest is to understand the con-

tributions of both type of mechanisms to a balanced growth path. This is a broad topic that

has been studied extensively. An important early contribution is Jovanovic and MacDonald

(1994).

Weitzman (1998) gives a mathematical description of a process where the engine of growth

is the repeated combination of pairs of original ideas from different areas of knowledge.

Our modeling of diffusion, at that general level, is guided by the same mechanism: ideas

embodied in different goods are pairwise combined to produce newer ideas. Nevertheless our

specification of ideas is closer mathematically to the one in Kortum (1997), as we extended

by Alvarez et al. (2008).

Jovanovic and Rob (1989) have a model with a simpler demand side, where new ideas

(productivities) are created by random meeting of existing ideas, but they allow for a richer

set of possibilities after the meeting of two potential producers. In their model, potential

producers can either implement their ideas or engage in costly search for a random meeting

of a another holder of an unimplemented idea. Once ideas are implemented, they are no

longer available to be combined with other ideas (implemented or not). Another difference

in their outcome is that the ideas that are being recombined are the relatively bad ones, since

the goods ones are implemented. Thus the initial set of ideas has an decreasing impact in

the creating of new ideas as as time goes by. Furthermore their model, as in Kortum (1997)

features an exogenous arrival of new ideas. Again, relative to our work, they abstract from

trade.

A related problems, building on Alvarez et al. (2008), are studied by Lucas and Moll

(2011) and Perla and Tonetti (2012). Lucas and Moll (2011) consider the problem of an

individual which can produce or search for new ideas with variable intensity i.e in terms of

the object of this model they select α(t) ∈ [0, 1], which is interpreted as fraction of time

devoted to search for new ideas. The process of search is similar to the one in this paper.

This allows the authors to study aggregate economic growth and cross sectional individual

income differences. Perla and Tonetti (2012) study a similar problem, but their formulation

is closer to a standard search model, in which α(t) ∈ {0, 1}.
We relate to a broader literature that examines the connection between growth and trade,

both theoretically and empirically.

Grossman and Helpman have several theoretical papers on growth and trade. The one

that is closest to ours is Helpman and Grossman (1991). They consider a small open economy

6



where reserchers develop new varieties of intermediate inputs. Technology is transferred from

the rest of the world as an external effect. The pace of technology transfer is assumed to be

proportional to the volume of trade. Their model abstracts from the selection effect which is

at the core of our model, since the transmission depends on aggregate outcomes and affects

all the entrants in the same way.

Waugh et al. (2013) use the approach in Perla and Tonetti (2012) to analyze a world

economy interacting through trade, but restrict learning to happen only from domestic pro-

ducers. Instead, the novel feature that we introduce is that trade put domestic producers in

contact with the most efficient (subject to trade costs) foreign and domestic producers from

which they can learn and improve their technologies.

There is a larger empirical literature studying the relationship between trade, growth and

development. On balance, they find relationships between trade flows, domestic and foreign

innovation, and TFP (Coe and Helpman, 1995; Coe et al., 1997; Acharya and Keller, 2009).

See Keller (2004) and Keller (2008) for reviews of this literature.

2 Technology Diffusion in a Closed Economy

We begin with a description of technology diffusion and growth in a closed economy. Con-

sumers have identical preferences over a [0, 1] continuum of goods. We use c(s) to denote

the consumption of an agent of each of the s ∈ [0, 1] goods for each period t. There is no

technology to transfer goods between periods. The period t utility function is given by

C =

[∫ 1

0

c(s)1−1/ηds

]η/(η−1)

,

so goods enter in a symmetrical and exchangeable way. Each consumer is endowed with one

unit of labor, which he supplies inelastically.

Each good s can be produced by many producers, each using the same labor-only, linear

technology

y(s) = z(s)l(s) (1)

where l(s) is the labor input and z(s) is the productivity associated with good s. Given the

set-up, it is natural to assume that all the identical producers of good s behave competitively,

an assumption we will maintain for the analysis of the paper.3

Using the symmetry of the utility function and the assumed competitive behavior we can

3In the Online Appendix we consider the case of Bertrand competition.
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group goods by their productivity z and write the time t utility as

C(t) =

[∫
R+

c(z)1−1/η f(z, t) dz

]η/(η−1)

, (2)

where c(z) is the consumption of any good s that has productivity z and f(·, t) is the pro-

ductivity density. We assume that f is continuous. We use F (z, t) for the cdf of productivity

so that the productivity density is f(z, t) = ∂F (z, t)/∂z.

In a competitive equilibrium the price of any good z will be p(z) = w/z and the ideal

price index for the economy at date t is

p(t) =

[∫
R+

p(z)1−ηf(z, t)dz

]1/(1−η)

. (3)

Real per capita GDP y(t) equals the real wage w/p(t) or

y(t) =

[∫
R+

zη−1f(z, t)dz

]1/(η−1)

, (4)

provided the integral on the right converges.

In our model the analysis of the closed economy becomes a study of the evolution of the

productivity distribution F (z, t): a process of technological diffusion. We model diffusion as

a process of search and matching involving the product managers of each of the s ∈ [0, 1]

goods. We treat search as a costless activity, a by-product of production. We assume that

managers interact with each other and exchange production-related ideas. When a manager

of any good with productivity z meets a manager of any other good with productivity z′ > z

adopts z′ for the production of his own good.4 After such a meeting the new technology z′ is

instantaneously diffused to all producers of the same good, thus keeping all the producers of

the same good homogenous. We assume that entire set of managers of any single good has a

total of α meetings per unit of time. While we refer to this process as technology diffusion,

it might as well be called innovation, since the more advanced technology used for one good

are adapted to a different good.5

Next we give a mathematical description of this process. To motivate a law of motion for

4Perhaps a more descriptive, yet less tractable model will distinguish between goods that are similar, in
terms of how transferable is the technology.

5The effect of indirect links, of the role of chance in our diffusion process, is familiar to us from the history
of technology. Here is a nice example, taken from chapter 13 of Diamond (1998): “[N]ew technologies and
materials make it possible to generate still other new technologies by recombination ... Gutenberg’s press was
derived from screw presses in use for making wine and olive oil, while his ink was an oil-based improvement
on existing inks....”
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the productivity distribution F (z, t), we describe the discrete change between t and t + ∆,

and then derive its continuous-time limit. For a given level of the productivity z at date t,

we assume that

F (z, t+ ∆) = Pr{productivity drawn at random < z at t+ ∆}

= Pr{productivity < z at t} × Pr{no greater draw in (t, t+ ∆)}

= F (z, t)F (z, t)α∆

The first term on the right reflects the option, which managers always have, to continue

with their current productivity. The second is the probability that in α∆ randomly drawn

meetings an agent with productivity z does not meet anyone with a higher productivity.

Given our assumption of independent draws, the fraction of managers with productivity

below z at date t+ h is given by product of these two terms.

We have that
F (z, t+ ∆)− F (z, t)

F (z, t)∆
=
F (z, t)α∆ − 1

∆

and taking limits as ∆→ 0 that:6

∂ logF (z, t)

∂t
= α log (F (z, t)) . (5)

Then for any initial distribution (cdf) F (z, 0) the path of F is given by

log(F (z, t)) = log(F (z, 0))eαt. (6)

It is evident from (6) that the law of motion (5) implies a non-decreasing level of real

income y(t). For empirical reasons, our interest is in sustained growth of economies that

either grow at a fairly constant rate or will do so asymptotically. A central construct in our

analysis will therefore be a balanced growth path (BGP), defined as a cdf Φ (with continuous

density φ) and a growth rate ν > 0 such that

F (eνtz, t) = Φ (z) for all t

6See Appendix A for an interpretation of the continuous time limit. A similar, but not identical, differential
equation could be based on the more familiar assumption of Poisson arrivals, as opposed to the continuous
arrivals postulated here. The formulation here has the convenient property of preserving distributions in the
Frechet family. See Alvarez et al. (2008) and the Poisson extension in the Online Appendix.
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is a particular solution to (5). On a BGP

f(z, t) =
∂F (z, t)

∂z
= φ(e−vtz)e−vt

also holds. Real GDP is

y(t) =

[∫
R+

zη−1φ(e−vtz)e−vtdz

]1/(η−1)

=evt
[∫

R+

xη−1φ(x)dx

]1/(η−1)

(7)

provided the integral on the right converges. In the rest of this section we characterize (i)

all pairs (Φ, ν) that are balanced growth paths and (ii) all initial distributions F (z, 0) from

which the solution F (evtx, t) will converge asymptotically to Φ(x).

The possible balanced growth solutions to (5) are contained in the Frechet family of

distributions, a two-parameter family defined by the cdfs:

F (z, 0) = exp(−λz−1/θ), θ, λ > 0. (8)

Proposition 1. The cdf/growth rate pair (Φ, ν) is a balanced growth path of (5) if and only

if Φ is a Frechet distribution with parameters λ > 0 and θ = ν/α.

Proof : It is immediate from (6) that if F (z, 0) is Frechet (λ, θ), F (z, t) is Frechet (eαtλ,θ)

for all t. Then if Φ(z) = F (eαθtz, t) is a BGP. Conversely, suppose (Φ, αθ) is a BGP so that

F (z, t) = Φ(e−αθtz) solves (6). Then

log
(
Φ(e−αθtz)

)
= log(Φ(z))eαt.

Differentiating both sides with respect to t and setting t = 0 gives

d log(Φ(z))

d log(z)
= −1

θ
log(Φ(z))

which has the general solution

log(Φ(z)) = −λz−1/θ. � (9)
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A Frechet distribution Φ has a “Pareto tail” which is to say that it has the property

lim
z→∞

1− Φ(z)

z−1/θ
= λ.

This is just a restatement of the solution (9) above, since Φ(z) → 1 as z → ∞ and so the

approximation log (Φ(z)) ' − [1− Φ(z)] becomes exact. The terminology stems from the

fact that the numerator above is the right cdf of the Frechet distribution while the right cdf

of the Pareto has the form Az−1/θ. The two tails are proportional. The parameter θ is often

referred to as a “shape” or “tail” parameter.

This observation is central to a study of the stability of balanced growth paths, or to the

question of what conditions on the initial distribution F (z, 0) ensure that

lim
t→∞

logF (eαθtz, t) = −λz−1/θ for all z > 0 (10)

for some λ > 0 and θ > 0. The answer to this question is given by

Proposition 2. The solution (6) to (5) satisfies the stability condition (10) for some λ and

θ if and only if the initial distribution F (·, 0) satisfies

lim
z→∞

1− F (z, 0)

z−1/θ
= lim

z→∞
θz1/θ+1f(z, 0) = λ. (11)

Proof. Using 6), (10) holds if and only if

lim
t→∞

log
[
F (eαθtz, 0)

]
eαt

z−1/θ
= −λ.

Use the change of variable x = eαtz1/θ to get the equivalent statements

lim
x→∞

log
[
F (xθ, 0)

]
x

= −λ

or

lim
z→∞

1− F (z, 0)

z−1/θ
= λ.�

There are, of course, initial distributions that generate paths that do not converge in the

sense of (10): any distribution with a bounded support, for example. At the opposite extreme,

an example of an initial distribution that implies a growth rate that increases without bound
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can also be constructed, as we show in the Online Appendix.

3 Competitive Trade Model

In this section we move from the autarky model of Section 2 to a world economy of n countries.

each with its own productivity distribution Fi(·, t) at any date t, all linked by trade in goods.

The technology profile F = (F1, ..., Fn) will be the state variables of the world economy. We

take iceberg trade costs and populations as given and construct a static trade equilibrium

under the assumption of continuous trade balance. Among other things, this equilibrium

will determine the productivity distribution of the product managers who are active in each

country i. We label the cdfs of these distributions Gi(·, t). Product mangers in i, active and

inactive, will meet managers from Gi at a given rate α and the outcomes of these meetings

will provide a law of motion ∂Fi(z, t)/∂t for the technology profiles of all countries. This

mapping is the topic of this section. Since the analysis is static, we temporarily suppress the

time subscripts. The implied dynamics will be studied in Section 4.

The model is a variant of the trade theory of Eaton and Kortum (2000) and Alvarez and

Lucas (2007). Each country under autarky is identical to the closed economy described in

Section 2. We use the same notation here, adding the country subscript i to the variables ci(s),

zi(s), yi(s), and `i. In this many-country case we group goods s which have the same profile

z = (z1, ..., zn) of productivities across the n countries, where zi`i is the production technology

of the good z in country i. We assume that productivities are independently distributed across

countries, and let f(z) =
∏n

i=1 fi(zi) denote the joint density of productivities. With this

notation we can write the period utility as

Ci =

[∫
Rn+
ci(z)1−1/η f(z)dz

]η/(η−1)

,

where ci(z) is the consumption in country i of goods that have the cost profile z.

We use wi wage rates. We assume iceberg shipping costs: when a good is sent from

country k a fraction κik of the good arrives in i. The costs κik are the same for all goods,

and satisfy 0 < κij ≤ 1 for all i, j and κii = 1 for all i. Each good z = (z1, ..., zn) is available

in i at the unit prices
w1

κi1z1

, ...,
wn
κinzn

,

which reflect both production and transportation costs.
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We solve for equilibrium prices, given wages. Let pi(z) be the prices paid for good z in i :

pi(z) = min
j

[
wj
κijzj

]
since agents in i buy the good at the lowest price. We let Bij ⊂ Rn

+ be subset of the

productivity (and goods) space

Bij = {z ∈ Rn
+ :

wj
κijzj

≤ wk
κikzk

for all k 6= j}.

for which j is the least cost vendor to i. Given prices pi(z), the ideal price index is the

minimum cost of providing one unit of aggregate consumption Ci to buyers in i :

p1−η
i =

∫
Rn+
pi(z)1−η f(z)dz =

n∑
j=1

∫
Bij

(
wj
κijz

)1−η

fj(z)dz

or

p1−η
i =

n∑
j=1

(
wj
κij

)1−η ∫ ∞
0

zη−1fj(z)
∏
k 6=j

Fk

(
κijwk
κikwj

z

)
dz. (12)

With prices determined, given wages, we turn to the determination of equilibrium wages.

Consumption of good z in country i equals

ci(z) =

(
pi
pi(z)

)η
Ci =

(
pi
pi(z)

)η
wiLi
pi

.

where the first equality follows from individual maximization and the second follows from

the trade balance conditions piCi = wiLi. The derived demand for labor in country i is thus

n∑
j=1

∫
Bji

cj(z)
1

κjizi
f(z)dz =

n∑
j=1

∫
Bji

(
pj
pj(z)

)η
wjLj
pj

1

κjizi
f(z)dz

=
n∑
j=1

(
κjipj
wi

)η
wjLj
pj

1

κji

∫ ∞
0

zη−1fi(z)
∏
k 6=i

Fk

(
κjiwk
κjkwi

z

)
dz.

Since labor is supplied inelastically, this implies

Li =
n∑
j=1

(
pj
wi

)η
wjLj
pj

κη−1
ji

∫ ∞
0

zη−1fi(z)
∏
k 6=i

Fk

(
κjiwk
κjkwi

z

)
dz. (13)

Given populations L = (L1, ..., Ln), trade costs K = [κij] and the distributions F =

(F1, ..., Fn), equations (12) and (13) are 2n equations in wages w = (w1, ..., wn) and prices
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p = (p1, ..., pn) .as n equations in w = (w1, ..., wn) .

Definition. A static equilibrium is a wage w = (w1, ..., wn) ∈ Rn
+ such that for some

p = (p1, ..., pn) ∈ Rn
+ , (w, p) solves (12) and (13).

The next proposition states that a static equilibrium exists and that, provided η ≥ 1,

there is a unique static equilibrium.

Proposition 3: We take as given trade costs K, populations L, and distributions F . We

assume that Li > 0 and that 0 < κij ≤ 1 and that the right cdfs F = (F1, ..., Fn) have

continuous densities and satisfy

lim
z→0

fi(z)z

1− Fi(z)
=

1

θi
> η − 1 (14)

for all i = 1, ..., n. Then there exists a static equilibrium wage w. Moreover, if η > 1, the

excess demand system has the gross substitute property, and hence (i) the static equilibrium

wage w is unique, and (ii) equilibrium relative wages are decreasing in population sizes:

∂(wj/wi)

∂Li
> 0

for all j 6= i.

Proof: See Appendix B.

4 Diffusion in a World Economy

The central idea of this paper is that trade in goods among countries stimulates the exchange

of productivity-related ideas. In Section 2 we described a specific model of the exchange of

ideas within a closed economy. In Section 3 we provided a model of trade in goods with

many countries. Now we put these pieces together.

To do this, we replace the assumption of Section 2 that product managers in country i

learn from the examples of other managers in their own country with the assumption that

they learn from the managers of products that are sold in i, regardless of their origin. Instead

of drawing from the distribution Fi(·, t) they draw from a distribution Gi(·, t) defined by the
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cdf

Gi(z, t) = Pr{seller active in i at t has productivity ≤ z}

=
n∑
j=1

Pr{seller from j is active in i at t and has productivity ≤ z}

=
n∑
j=1

∫ z

0

fj(y, t)
∏
k 6=j

Fk

(
wk(t)κij
wj(t)κik

y, t

)
dy (15)

The probability that a producer in j with the productivity y exports to i is fj(y, t) times the

probability that no producer elsewhere can offer a lower price. This will depend on all the

productivity distributions plus trade costs plus equilibrium relative wages as determined in

Section 3. The law of motion for productivity in each country then becomes

∂ log(Fi(z, t))

∂t
= αi log(Gi(z, t)) (16)

We are now in a position to define an equilibrium that describes the full dynamics of a

world economy given parameters K,L and initial distributions F (·, 0) = (F1(·, 0), ..., Fn(·, 0)).

Definition. An equilibrium is a time path of wages w(t) = (w1(t), ..., wn(t)) and cdfs F (·, t)
for all t ≥ 0 such that

( i) w(t) is a static equilibrium as defined in Section 3, and

(ii) given w(t) the path F (·, t) satisfies (15) and (16).

As in Section 2, we are also interested in balanced growth equilibria. Here we define a

BGP as a common growth rate ν and a profile of productivity distributions Φ = (Φ1...,Φn)

such that

Φi(x) = Fi(e
νtx, t)

for all t. Along a BGP we can substitute Φi(e
−νtz) for Fi(z, t) in (16) and φi(e

−νtz)e−νt for

fi(z, t), and using the homogeneity of the model we have that a BGP (Φ, ν) must satisfy7

∂ log (Φi(e
−νtz))

∂t
= αi log

(
n∑
j=1

∫ e−νtz

0

φj(y)
∏
k 6=j

Φk

(
wkκij
wjκik

y

)
dy

)
.

Letting x = e−νtz, we have

ν
xφi(x)

Φi(x)
= −αi log (Γi(x)) , (17)

7Formally, let (w, p) be the equilibrium wages and prices for an economy with K,L, F . Let ξ ∈ R++ and

define F ξi as F ξi (z) = Fi(ξz), for all i. Then (w, p) are also the equilibrium wages and prices for an economy
with K,L, F ξ.
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where

Γi(x) =
n∑
j=1

∫ x

0

φj(y)
∏
k 6=j

Φk

(
wkκij
wjκik

y

)
dy. (18)

Let γi(x) = ∂Γi(x)/∂x be the associated density.

The relations (15) and (18) of learning environments Gi to the profile F are complicated.

A backward producer in a large, low wage economy could undercut a domestic producer with

higher productivity or another foreign producer with higher trade costs. Little can be said

in general, but the next result shows that all Gi are bounded from below by the joint dis-

tribution of sellers that would be active in i in a hypothetical world economy with no trade

costs and a common labor market.

Proposition 4: Gi(z; K,w) ≥
∏n

j=1 Fj(z), with equality if K = I and w = 1.

Proof : Define the sets

M(z) =
{
z ∈ Rn

+ : max{z1, ..., zn} ≤ z
}

and

Bi(z; w,K) =

{
z ∈ Rn

+ : zj∗ ≤ z, where j∗ = arg min
j∈{1,...,n}

{
wj
zjkij

}}
.

It is easy to see that M(z) ⊆ Bi(z; w,K) since max{z1, ..., zn} ≤ z ⇒ zj ≤ z, all j = 1, ..., n.

Therefore,

Gi(z; K,w) =

∫
z∈Bi(z;w,K)

f(z, t)dz ≥
∫
z∈M(z)

f(z, t)dz =
n∏
j=1

Fj(z, t).�

The next result is instructive, even though it is limited to the case of a symmetric world

with costless trade.

Proposition 5: Assume that the n countries have the same size, Li = L, and the same

α = αi, and that trade is costless, κij = 1, all i, j, and that the initial distributions are the

same: Fi(z, 0) = F (z, 0). Then wages will be identical and the equilibrium path of F (z, t) is

∂ log(F (z, t))

∂t
= αn log(F (z, t)). (19)

Proof: The distribution of sellers varies across countries only through its dependence on

country specific trade costs (see (15)). Therefore, in the case of costless trade all coun-

tries share the same distribution of sellers, Gi(z) = G(z). In this case, the distribution of
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productivity for every country i solves

∂ log(Fi(z, t))

∂t
= α log(G(z, t)).

In this symmetric case,

G(z, t) =

∫ z

0

nf(y, t) [F (y, t)]n−1 dy = F (z, t)n.

We can drop the subscripts and (19) follows.�

Along a BGP we can replace F (z, t) with Φ(e−νtz) and let x = e−νtz to obtain

φ(x)x

Φ(x)
= −αn

ν
log(Φ(x))

Then Proposition 1, with nα replacing α yields the

Corollary 1: The symmetric world economy described in Proposition 5 is on a balanced

growth path if and only the cdfs are given by the Frechet cdf

Φi(z) = exp(−λz−
1
θ )

with parameters λ and θ, and the growth rate of each of all economies is

ν = nαθ.

The fact that the equilibrium growth rate is proportional to the number of economies n

may require comment. We certainly do not believe that the division of Czechoslovakia into

Slovakia and the Czech Republic led to an increase in world growth rates. In practice, ν would

be identified with measured gdp growth and θ with a tail parameter (as discussed below)

and the product nα with ν/θ. In everything that follows, we treat n as an unobservable

constant.8

In Propositions 6-8 below, we develop some facts about much more general cases. The

Frechet distribution does not obtain in these cases. But, perhaps surprisingly, the formula

ν = nαθ (or more generally, ν = θ
∑n

i=1 α) continues to describe the BGP of all economies.

8In Appendix C we present an extension of the model with multiple locations per country to clarify the
role of scale effects. There we show that, provided that the structure of transportation cost and labor markets
across locations is kept constant, an equilibrium of the model is invariant to arbitrary division of locations
into countries.
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The following condition on the tail behavior of these distributions will be used in deriving

the next three results in this section.

Condition C: We say that a profile F (z) = (F1(z), ..., Fn(z)) satisfies Condition C if

lim
z→∞

1− Fi(z)

z−1/θi
= λi <∞

for all i,

lim
z→∞

1− Fi(z)

z−1/θi
= λi > 0

for some i, and wi and κij > 0 for all i, j.

If Condition C holds no country is capable of ever-accelerating growth, at least one country

is capable of sustained growth at a positive rate, and all countries are connected in the sense

that it is possible for any country to trade with any other country.

The next result shows that the distributions Gi share a common right tail, with tail pa-

rameter θ = maxi θi.

Proposition 6: Assume that the profile F (z) satisfies Condition C. Then for all i the cdfs

G1, ..., Gn satisfy

lim
z→∞

1−Gi(z, 0)

z−1/θ
= λ > 0, (20)

where θ = maxi θi and λ =
∑

j λj.

Proof: We show that

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
= λ (21)

for all i which will obviously imply (20). Differentiating both sides of (15) with respect to z

and dividing through by (1/θ) z−1/θ−1 where θ = maxi θi we obtain

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
=

n∑
j=1

lim
z→∞

fj(z, 0)

(1/θ) z−1/θ−1

since the cdfs Fk → 1 as z → ∞ under the assumption that wi and κij > 0. Condition C

requires that

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
=

n∑
j=1

λj lim
z→∞

(1/θj) z
−1/θj−1

(1/θ) z−1/θ−1
.

The terms in the sum on the right are zero if λj = 0 or if θj < θ and equal to λj > 0

otherwise. This verifies (21) and completes the proof. �
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Proposition 6 describes the instantaneous effects of anything that alters the static trade

equilibrium. Suppose, for example, that the initial distributions F1(·, 0), ...Fn(·, 0) represent

a situation of autarky that is ended at t = 0 by an opening to trade. Then immediately all

countries will have access to the source distributions Gi(·, 0) characterized in Proposition 6,

all which have the same “Pareto tail.” For the analysis of trade dynamics, then, any initial

differences in the initial tail parameters θi cease to matter, and we use θ to denote only

θ = maxi θi.

Proposition 7. Assume that αi > 0, all i, and that the profile of stationary distributions

Φ = (Φ1(z), ...,Φn(z)) satisfies Condition C. Then the growth rate on the balanced growth

path equals

ν = θ
n∑
i=1

αi (22)

and

lim
x→∞

1− Φi(x)

x−1/θ
=

αi∑
j αj

∑
j

λj. (23)

Proof: For large x, (17) and (18) imply

ν
φi(x)

x−1/θ−1
' − αi

log (Γi(x))

x−1/θ

= αi
∑
j

λj (24)

where the second line follows from Proposition 6 and Condition C. Condition C also implies

that for large x, φi(x) ' (λi/θ)x
−1/θ−1 so

νλi = θαi

n∑
j=1

λj.

Summing both sides over i yields (22) and then (23) follows from (24). �

As in Section 2, we are interested in conditions on the initial knowledge distributions

Fi(z, 0) that will imply convergence to a balanced growth path, in the sense that

lim
t→∞

log
[
Fi

((
e(ν/θ)tx

)θ
, t
)]

x−1
(25)

is constant for all x > 0, i.e., that the normalized productivity x(t) ≡ e−νtz(t) has a Frechet

19



distribution as in equation (10). Here we assume profiles for initial distributions Fi(z, 0) that

satisfy Condition C. Proposition 7 then implies that equations (22)-(23) hold for the common

value θ > 0 and positive values λ1, ..., λn. In this n country case, ν = θ
∑n

i=1 αi. It is certainly

not the case that these conditions will imply (25) for all values of x but the next result shows

that (25) holds in the limit as x→∞ and provides a characterization of the dynamics of the

right-tail of the productivity distributions Fi(z, t).

Proposition 8: Assume that
∑n

i=1 αi > 0, that F (z, 0) satisfies Condition C, and that there

exist a solution to (16) that is twice continuously differentiable with respect to z and t. Let

λi(t) = − lim
x→∞

log
[
Fi((e

−(ν/θ)tx)θ, t)
]

x−1

and let

λ∗i =
αi∑n
j=1 αj

n∑
j=1

λj(0).

Then, for all t

λi(t)− λ∗i = [λi(0)− λ∗i ] e−(ν/θ)t. (26)

Proof: See Appendix B.

Note that neither wages wj nor trade costs κij affect the right tail of productivity in the

balanced growth path. The relative level of the right tail across countries depends only on

the relative value of αi, the rate at which technology diffusion opportunities arrive. If all

the αi are the same, then the right tail (of normalized) productivity converges to the same

value for all countries. Otherwise, countries with more opportunities for technology diffusion

converge to a permanently higher productivity, which translates into higher income levels. As

in the closed economy case, the level of the initial right tail of productivity has a permanent

effect on the long run distribution, except that in the multi-country case it is the sum of the

(normalized) right tails which matters in the long run. In addition, note that if αi = 0 for

some country i then λ∗i = 0, as this country’s technology is constant, and hence gets farther

and farther behind the rest.

To better understand the role of cross country differences on the arrival of technology

diffusion opportunities consider the case where trade is costless, so all κij = 1, but where the

value of αi differs across countries. With costless trade Gi(z) = Gj(z) for all z, and hence
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from (17) and (18) we obtain that for all z > 0:

Φi(z) = Φj(z)
αi
αj

or equivalently

lim
t→∞

log
[
Fi

((
e(ν/θ)tz

)θ
, t
)]

log
[
Fj

(
(e(ν/θ)tz)

θ
, t
)] =

αi
αj

(27)

Thus if αi > αj country i has a distribution of productivity that is stochastically better than

j. Hence with costless trade the ratio of (25) equals the ratio of the α’s not only as z →∞
but for all values of z <∞.9

The next proposition analyzes the effect of the elasticity of substitution η in imports

elasticities, equilibrium wages, and relative GDP’s. As a preliminary step we define the total

value Iij of purchases of country i from j as function of trade cost K and wages w by

Iij =

∫
Bij

pi(z)ci(z)f(z)dz

=

∫ ∞
0

(
wj

zj κij pi

)1−η

wiLi fj(zj)
∏
k 6=j

Fk

(
wkκij
wjκik

zj

)
dzj ,

Remark 1: For the case when all Fi are given by Frechet distributions with scale parameters

λi and the same shape parameter θ, i) the Armigton’s elasticity, i.e. the price elasticity of

imports demand, which equals 1/θ, (iii) equilibrium wages, and iv) relative real GDP’s, and

thus gains from trade, are all independent of η, and relative GDP’s are given by the ratio of

λ’s (Eaton and Kortum, 2002; Alvarez and Lucas, 2007).

We use the notation Ĩij, w̃i, p̃i and ỹi to refer to imports of i from j, country’s i equi-

librium wages, price level, and real GDP for the Frechet case with tail parameter θ. The

same three objects without a tilde can be interpreted as the long run distribution of a world

economy that starts with Frechet distributions in all countries with the same tail parameter θ.

9In the case of different α’s the value of (25) for country i is not constant across z, i.e. the distributions
Φi is not Frechet.
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Proposition 9: Let θi = θ for all countries, and 0 < λi <∞. Then

lim
η→1+1/θ

Ii,j(K,w; η) = Ĩi,j(K,w) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi ,

lim
η→1+1/θ

wi(K; η) = w̃i(K) ,

lim
η→1+1/θ

pi(K; η)

pj(K; η)
=

p̃i(K)

p̃j(K)
,

lim
η→1+1/θ

yi(K; η)

yi(In×n; η)
=

ỹi(K)

ỹi(In×n)
.

Proof: See Appendix B.

This proposition is useful because the effects for the Frechet case are simple and well

understood. The logic behind the result is clear: as η → 1+1/θ the goods became such good

substitutes that demand is concentrated on the best products. The result follows because

the long run distributions of productivities have the same behavior in the tail as a Frechet

distribution. The proposition is stated in terms of ratios for two reasons: first in the Frechet

case the effect of η is multiplicative, and hence it cancels in this form. Second, the levels of

GDP and imports as η tends to this limit diverge to infinity.

Corollary 2: For the case of costless trade, K = In×n, in the long-run

lim
η→1+1/θ

yi(In×n; η)

yj(In×n; η)
=

(
λ∗i
λ∗j

)θ/(1+θ)

=

(
αi
αj

)θ/(1+θ)

.

This corollary is a direct consequence of the last two propositions and equation (27).

Summarizing, as explained in Remark 1, Eaton and Kortum (2002) takes as given that

productivity distribution given by Frechet with common tail θ and country specific λi which

determines the Armington elasticities, and per-capita income differences. Our technology

diffusion model gives a simple theory of θ and λi (propositions 7 and 8). In this theory,

heterogeneity in α’s imply differences in the level of income per-capita, while the sum of α’s

affects the common growth rate of the countries in the world.

We finish the theoretical exploration of the model by studying the effects of trade cost

and wages in the neighborhood of costless trade, which would be helpful to interpret some of
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the numerical results that follow. If we start from a situation with costless trade and equal

wages, a marginal increase in trade cost or wages has a negligible effect in the distribution

of sellers.

Proposition 10: Take an arbitrary profile of productivity distribution F (z) and consider

the distribution of seller to country i given a profile of equal wages and costless trade. Then,

the distribution of sellers to country i is invariant to small changes in trade cost or wages,

i.e.,
∂Gi(z; K,w)

∂κij

∣∣∣∣
K=I,w=1

=
∂Gi(z; K,w)

∂wj

∣∣∣∣
K=I,w=1

= 0.

Proof: Differentiating (18) with respect to κij

∂Gi(z; K,w)

∂κij
=

∫ z

0

[
fj(y)

∑
k 6=j

wk
wjκik

yfk

(
wkκij
wjκik

y

) ∏
l 6=j,k

Fl

(
wlκij
wjκil

y

)

+
∑
k 6=j

fk(y)

(
−wjκik

wk

1

κ2
ij

y

)
fj

(
wjκik
wkκij

y

) ∏
l 6=j,k

Fl

(
wkκil
wlκik

y

)]
dy.

Evaluating at K = I and w = 1 and rearranging terms

∂Gi(z; K,w)

∂κij

∣∣∣∣
K=I,w=1

=

∫ z

0

[
−yfj(y)

∑
k 6=j

fk (y)
∏
l 6=j,k

Fl (y)

+yfj(y)
∑
k 6=j

fk(y)
∏
l 6=j,k

Fl(y)

]
dy

= 0.

A similar analysis follows by differentiating (18) with respect to wj �

Proposition 10 holds independently of the profile of cdfs F (z), but it takes as given the

profile of wages w which we know is determined by the profile F (z). We complement this

result in Proposition 11, which studies the comparative static for the stationary distribution.

That proposition establishes that when starting from a world with symmetric countries and

costless trade, so that equilibrium wages are equal, changes in trade cost or in the size of

an individual country have a negligible effect on the profile of stationary distributions of

productivity of each country.

Let the parameters of a world economy be given by n, α, K and L. We are interested in
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the comparative statics of the profile of stationary distributions φ(x; K,L) with respect to

K and L, evaluated at the case of a world of n equal size economies with costless trade.

Proposition 11: Consider a world economy with matrix of trade cost K and vector of

population L. Let φ(z; K,L) be the stationary distribution of such an economy where the

corresponding equilibrium wages ensure balance trade for each country. Assume that for each

z the density φ(z; K,L) is differentiable. Then, for all z

∂φi(z; K,L)

∂κij

∣∣∣∣
K=I,L=1

=
∂φi(z; K,L)

∂Lj

∣∣∣∣
K=I,L=1

= 0.

Proof: Notice first that φ(z; K,L) is the solution to the system of non-linear differential

equations given by: equation (17) defining a balance growth path, equation (18) defining

the distribution of sellers, equation (13) giving the solution to the static trade equilibrium

wages, ν = nαθ defining the growth rate of a balance growth path, and limx→0
xφi(x)
Φi(x)

= θ and

limx→0 θx
θ−1φi(x

θ) = λ giving the boundary conditions for the densities. The result follows

from totally differentiating the system of non-linear differential equations and Proposition

10. �

Propositions 10 and 11 taken together give the precise sense in which in a homogeneous

world small trade costs have no effect on the diffusion of productivity. In the quantitative

exploration that follows, we find that the lack of first order effects is clearly visible in a large

range of parameters.

5 Quantitative Exploration

In this section we present numerical examples to illustrate the effect of trade costs. We

consider two cases: a world consisting of n symmetric countries facing trade costs κij = κ,

and, a world consisting of one asymmetric and n− 1 symmetric locations facing trade costs

κ1 = κ1j ≤ κji = 1, j = 2, ..., n, i 6= j. We also illustrate the effect on the diffusion of

technology of heterogeneous arrival rates αi and wages rates wi, driven by differences in the

size of countries Li.
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Calibration and Interpretation of Parameters

We can gain some understanding of the order of magnitude of the parameters α and θ by

using information of the long-run growth rate of the economy ν, and information on θ which

instead can be obtained either from the magnitude of trade elasticities. We turn to the

description of each of these approaches.

As showed before, in the case of a model with several symmetrical locations, θ is approx-

imately the Armington trade elasticity, which will give us simple way to measure it. This

method would suggest a value for θ in [0.1, 0.25] (Alvarez and Lucas, 2007). 10

Once we have an estimate of θ, together with an estimate of long term growth of output

ν, we can estimate the value of α, using that ν = nαθ. For instance, if we take the long-run

growth to be 0.02, nα would be in the range [0.03, 0.2]. Note that with a value of nα = 0.1,

which is the object that governs the speed of convergence of the λ’s in general as shown in

Equation (26), and of GDP in the setup of Corollary 2, the half-life to convergence will be

approximately 5 years.

Based on this discussion, we set θ = 0.2 to be consistent with the available evidence on the

right tail of the distribution of productivity, and set α = 0.02/(θ n), to match a growth rate

0.02. We consider a world consisting of n = 50 economies symmetric in all dimensions, with

the possible exception of their trade cost. Given our choice of n, in a world with symmetric

trade cost each economy has a relative GDP similar to that of Canada or South Korea.

Symmetric World

Figure 1 illustrates the long run effect on the distribution of productivities z of introducing

trade costs in a symmetric word of n countries. The thought experiment is to go from costless

trade to a case where κij takes a common value κ < 1 for all j 6= i. On the x-axis we measure

the value of productivity, expressed as a ratio to the average productivity in the economy

with costless trade (κ = 1). On the y-axis we display the density of relative productivities

for different values of κ. The top panel shows the densities of productivities of the potential

producers, the density φ (or f). The bottom panel shows the density of productivities of the

sellers active in each country, the common density γ (or g). We have chosen the value of λ

for the initial distribution so that with costless trade the average value of productivity z is

equal to one.

10An alternative calibration strategy is to follows that in Lucas (2009), and focus on the distribution of
productivity across “product managers” instead of individual workers. To operationalize the notion of a
“product manager” we interpret a plant or firm as one manager. This route is more natural in the version
of the model with Bertrand competition that we present in the Online Appendix, where we also follow this
strategy and obtain similar results.
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Figure 1: Long Run Effect of Trade Cost on the Distribution of Productivity
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The top panel displays the density of the stationary distribution of normalized productivity z of potential
producers in a country. for different value of trade cost, κ = 1, 0.9, 0.6. The bottom panel displays the
stationary density of normalized productivities for the in each country. The productivities in the x-axis
are measured relative to the expected value of the stationary distribution of potential producers in the
case of costless trade. We consider a world economy with n = 50 symmetric locations with parameter
values θ = 0.20, α = 0.002.

Note first that, due to the selection effect, the density of sellers is stochastically larger than

that of potential producers for each κ. The difference between the two densities increases

for larger trade cost (for lower values of κ). Second, note that for κ = 1 the densities are

Frechet, as we showed in Corollary 1. Third, for larger trade cost (lower κ) both densities

have a thicker left tail, especially so for potential producers. Fourth, the change in the

distribution of potential producers as κ varies illustrates the effect of trade costs on the

diffusion of technologies, the main feature of the model in this paper. Finally, we note

that these distributions are independent of the value of η, as equations (15) and (18) are

independent of η, and wi = 1 in a symmetric world. To highlight the novel effect of our

model, note that, in contrast, in the standard model trade costs do not affect the distribution

of physical productivity of potential producers, i.e., κ has no effect on the distribution plotted
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in the top panel of Figure 1.

Figure 2 illustrates the effect of introducing symmetric trade costs on real gdp in the

top panel and in the ratio of imports to gdp in the bottom panel in a symmetric word of

n countries. On the x-axis we measure trade cost. On the y-axis we measure real gdp,

relative to gdp under costless trade (top panel) or the trade share, relative to the costless

trade benchmark (bottom panel). In each panel the solid line displays the impact effect

of introducing the trade costs, calculated by holding the distribution of productivity fixed

at its distribution under of costless trade. As shown above, this benchmark has a Frechet

distribution. The other lines in each panel show the effect of introducing trade cost on the

balanced growth path. Each line is for a different value of the elasticity of substitution η.

Recall that the growth rate of the world economy is unaffected by the introduction of finite

trade cost, as long as κ > 0, so the ratios on these panels should be interpreted as level effects

around the common balanced growth path.

Thus, the solid line is showing the impact effects correspond to the familiar effects of

trade cost in the Ricardian trade theory of Eaton and Kortum (2002) and Alvarez and Lucas

(2007). In particular, this is the standard welfare gains due to the reallocation of resources

using the same technology. The other curves show the long-run impact of trade cost, which

includes the effect on the diffusion of ideas which changes the distribution of technologies.

The difference with the solid line, measures the extra effect of trade highlighted by our theory.

For the standard impact effect there is an analytical expression for the GDP of an economy

relative to case of costless trade:11

C(κ)

C(1)
=

[
1 + (n− 1)κ

1
θ

]θ
nθ

.

The output effects of trade cost depend only on θ, the country size, 1/n, and the value of

the trade cost κ. As it has been noted, this expression does not depend on the value of the

substitution elasticity η.

In contrast, in the long-run, once diffusion changes the distributions of productivity, the

value of η does matter, as showed by the dashed lines. These effects of trade costs on gdp

are larger the more difficult it is to substitute domestic goods for imports. The long-run

calculations include the effects of the changes in the distribution of productivity due to the

diffusion of technology, which are the contribution of this paper. As trade cost increases,

individuals in each country meet relatively more unproductive sellers, and therefore the good

technologies diffuse more slowly.

11This formula follows from specializing equation (6.10) in Alvarez and Lucas (2007) to a world without
intermediate goods, non-tradable goods, and tariffs.
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Figure 2: Impact and Long run effect of introducing trade cost
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The top panel shows the effect of trade cost on per-capita income on impact (solid), and the long-run
effect for various values of η = 2, 4, 5. The comparison, and the initial condition, is given by the model
with costless trade, i.e., κ = 1. The bottom panel shows the effect of trade cost on the volume of trade,
measured as import to GDP. The effect on impact is the same regardless of the value of η. We consider
a world economy with n = 50 symmetric locations with parameter values θ = 0.20, and α = 0.002.

This panel also shows that the difference between the effect on impact (solid line) and the

long-run effects (any of the other lines) are extremely small in the neighborhood of costless

trade. This is to be expected, since Proposition 11 shows that around the symmetric costless

trade, trade cost have only second order effects on productivity. Indeed, Figure 1 shows that

the lesson drawn from Proposition 11 applies for a large range of trade costs, say even trade

cost as large as κ ≥ 0.5.

The effect of trade cost on the volume of trade is shown in the bottom panel of Figure

2.12 The impact effect and long-runs effects are defined as in the top panel. Note that the

impact effect of trade is the same as in Alvarez and Lucas (2007), since the distribution of

12Total imports in country j are Ij =
∑n
i=1,i6=j Iji and volume of trade, defined as imports relative to GDP,

is given by vj = 1/(1 + Ijj/Ij).
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productivities is Frechet, and it is given by13

v =
(n− 1)κ1/θ

1 + (n− 1)κ1/θ

The long run effect of trade cost on the volume of trade is smaller than its effect on impact.

This is due to the fact that a higher trade cost leads to a distribution of productivity for

potential producers with a thicker left tail and the same right tail (see Figure 1), i.e. they lead

to larger dispersion of productivities. A larger dispersion of productivity is associated with

larger gains from trade. In addition, the difference between the long-run and the impact effect

is larger the lower the elasticity of substitution η. As discussed before, the distribution of

productivities are independent of the value of η, but the gains from trade are not independent

of η, and with a lower elasticity of substitution for any given κ there is more trade.

For the interpretation of the magnitude of trade cost, the reader should remember that,

for simplicity, in our model all goods are tradable. Compare our model with Alvarez and

Lucas (2007) which includes a non-tradable sector, one with infinite trade cost, and with a

fixed (i.e. Cobb-Douglas) share of expenditure. Thus our model’s closest counterpart in the

data will be the volume of trade for the tradable sector. Alternatively one could introduce

a non-tradable sector in our model, and match it with the volume of trade of the whole

economy, as in Alvarez and Lucas (2007).14

In the Online Appendix we also explore the robustness of the welfare results presented

above to the case with Bertrand competition. We conclude there that for small and medium

size trade cost, i.e. κ ≥ 0.5, the welfare difference between perfect and Bertrand competition

is a pure level effect, i.e. independent of κ, both on impact and on the long run. We reach

this conclusion by analyzing the case of 25 symmetric countries, each with two locations,

so that the total number of locations are the same as in the previous examples. For each

elasticity η, we compare the ratio of the consumption using Bertrand competition to perfect

competition for a given common trade cost κ < 1, with the same ratio for a zero trade cost

(κ = 1). These ratios were between .98 and .95. For large trade cost, κ < 0.5, the effect of

changes in trade cost on this ratio is more significantly, although the pattern depends on the

particular value of the elasticity of substitution, taking values between 0.87 and 0.99.

13See Alvarez and Lucas (2007) expression (6.11) for the case of β = ω = 1 and α = 0.
14For instance, suppose non-tradables have a share ξ of expenditures, with labor freely mobile across

sectors. Furthermore, suppose a form of Balassa-Samuelson hypothesis where there is no diffusion in non-
tradables. Then, the model applies literally to a fraction 1 − ξ of the economy, and the trade share for the
whole economy will be (1 − ξ) times the trade share of our. Yet a better model, which has a similar effect
but that requires more analysis, is one where diffusion occurs across both tradables and non-tradeables. The
effect on this model on trade volume will be similar, but the analysis of the dynamics of diffusion is more
complicated. We skip the inclusion of non-tradables for simplicity.
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Asymmetric Trade Barriers

In the previous exercises we illustrated the effect of symmetric trade barriers. We now

explore the impact of unilateral trade barriers by considering a world economy consisting of

n countries, n − 1 of which face symmetric trade cost κ1 when trading among themselves,

and a single country that faces a relatively larger cost to trade from and to this country,

κn ≤ κ1. We refer to the first group as the n− 1 symmetric countries, and to the later as the

single deviant economy. Given our choice of n = 50, the single deviant economy is a country

of the size of Canada or South Korea.15 We interpret the n− 1 relatively open countries as

developed economies. Following Alvarez and Lucas (2007), we calibrate their trade cost to

κ1 = 0.75.16

In Figure 3 we illustrate, for different levels on initial trade cost, how the balanced growth

path of these n−1 economies is affected by changes in the cost of trade with the single deviant

economy, κn. In the top panel we show the effect on the per-capita income of the n − 1

symmetric countries (solid line) and the single deviant economy (dashed line). Similarly, in

the bottom panel we show the effect on the volume of trade. Most of the impact occurs in

the single deviant economy which has higher trade cost. For the n− 1 symmetric economies

the goods produced by the single deviant economy are a small fraction of their consumption.

As before there are two effects on real consumption from reductions in trade costs. The first

is the effect captured in the traditional trade model: i.e., individuals consume goods that are

less costly. The second effect is that the distribution of productivity get better as domestic

producers interact with more productive sellers.

Figure 4 displays the dynamic path following a trade liberalization of the single deviant

economy whose initial balanced growth path is described in Figure 3, for three values of the

pre-liberalization trade cost. In particular, Figure 4 displays the dynamic effects of a once-

and-for-all trade liberalization in the single deviant economy, taking the form of a reduction

of its trade costs to the level of the advanced economies. These dynamics are shown for

three different initial conditions (pre-liberalization), corresponding to the balance growth

path with three alternative values of trade cost κn(0) = 0.05, 0.30, 0.50. In the top panel we

show the value of GDP per-capita relative to the case with costless trade for the single deviant

economy in the pre-liberalization and in the first 20 years following the trade liberalization.

The bottom panel shows the initial and post liberalization dynamics of the volume of trade.

15For our benchmark parameter values this size of the single deviant economy is far from the theoretical
small open economy limit discussed in Appendix C. In that limit case there should be no effect on GDP or
volume of trade after impact. Instead for the size of this single deviant economy there is a non negligible
dynamic effect.

16This value is a compromise between low values of κ obtained from indirect estimates using gravity
equations and higher ones using direct evidence of transportation costs, e.g., freight charges, imputed time
costs on cargo in transit.
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In the x-axis we show the years that elapse since the trade liberalization.

The main message from Figure 4 is that a large part of the output gains from a reduction in

trade costs occur immediately. The distribution of productivity of the single deviant economy

is not affected on impact, but this economy is no longer forced to rely on its own producers

for most of the goods it consumed, and can therefore discontinue its most unproductive

technologies. In the model, this effect happens immediately. This is the effect captured by

the standard trade model.17 Thereafter, the distribution of productivity continues to improve

due to the diffusion. This affects the whole distribution with the exception of the right tail

(see Proposition 7 and 8, and Figure 1). These effects are persistent. The half lives are 10

years and longer. The magnitude of the effect on the distribution on per-capita income will

depend on the value of η. For instance, if η is close to 1/θ + 1, per-capita income is only a

function of the tail of the distribution, which is not affected by trade cost (see Proposition

9).

Heterogeneity in the Diffusion Rates α

In this section we explore the effect of cross country heterogeneity on the diffusion rate α

of the long run relative real income levels. This analysis complements the cases of either

large elasticity of substitution, η → 1/θ + 1, or a small open economy of Corollary 2 and

Remark 2 in Appendix C, where we obtain the following analytical result: The ratio of long

term real GDP equals yi/yj = (αi/αj)
θ/(1+θ). We focus on a case where there are two values

of the diffusion rate αL < αH , where half of the countries have one value and the other

half the other, and where countries are identical in all other respects. We focus on costless

trade so that the only departure from a Frechet distribution of productivities is due to the

heterogeneity on the meeting rate. We conclude that the differences with the analytical cases

discussed above are small.

Figure 5 plots the ratio of the long term real gdp levels for the countries with αL relative

to those with αH . The rest of the parameters are n = 50, the growth rate is ν = 0.02 and

the value of θ = 0.2. For each ratio of the α’s we chose the sum of them so that the balanced

growth rate is ν = 0.02. We display the ratio of the α’s in the horizontal axis. Each curve

corresponds to a different value of the elasticity of substitution η.

We make two remarks on Figure 5 . First, the line for η = 1/θ+1 corresponds to the case

of Corollary 2 and Remark 2 in Appendix C. Note that, for instance, if half of the countries

have a diffusion rate ten times smaller, then the ratio of real incomes is about 60% of the

17These effects are larger than those predicted by a model with Frechet distribution (Eaton and Kortum,
2002), as the initial distribution of the single deviant economy has substantially more mass in the left tail
than a Frechet distribution, similarly to the examples described in Figure 1.
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Figure 3: Long run effect of increasing trade costs in a single deviant economy
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The top panel shows the effect of increasing the trade cost of a single deviant economy, κn, on per-capita
income. The trade cost of the n − 1 remaining countries is fixed at κ1 = 0.75. The solid line shows the
effect on the remaining n − 1 symmetric countries. The dashed line shows the effect on the nth single
deviant economy. The per capita income are compared with the value they would have had if there trade
cost will be zero in all countries, i.e. κ1 = κn = 1. The bottom panel shows the effect of increasing
the trade cost of the single deviant economy on the volume of trade, measured as imports to GDP. We
consider a world economy with n = 50 countries. We use θ = 0.20, α = 0.002, η = 3.

one with the large diffusion rate. Instead if this diffusion rate is half, their real gpd is about

85% of the leaders. This is a numerical illustration of the comments right after Corollary 2.

Second, the effect of a smaller η in relative gpd is small. In the case where the elasticity of

substitution across goods is lower than the critical value, i.e., η < 1/θ + 1, the effect beyond

the right tail have to be taken into account. Yet, the quantitative effects, i.e., the vertical

distance between the lines, are small.

Technology Diffusion and Wages

This section assesses the effect of different wages on the diffusion of technology. Recall that

our assumption is that technology is diffused to the potential producers in a location from
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Figure 4: Transitional Dynamics Following a Reduction in Trade Cost of a Single Deviant
Economy
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The top panel shows the dynamics of per-capita GDP of the nth originally deviant country following a
reduction in trade cost, κn(0)→ κn = 0.75, for three initial levels of trade cost, κn(0) = 0.05, 0.30, 0.50.
The trade cost of the n−1 symmetric countries is fixed at κ1 = 0.75. Per-capita GDP is measured relative
to the value in a world with costless trade, i.e., κ1 = κn = 1. The bottom panel shows the corresponding
dynamics of the volume of trade, measured as imports to GDP. We consider a world economy with n = 50
countries. We use θ = 0.20, α = 0.002, η = 3.

cost efficient producers located everywhere. Since sellers are determined by a comparison of

relative cost of a particular good across locations, which depends on wages, thus differences

in wages translate into difference in diffusion of technologies. In particular we explore the

difference in diffusion due to difference in wages, itself caused by difference in country size,

i.e. Li. To isolate from other features we consider the case of no trade cost, i.e. κj,i = 1

and of only two large countries (or equivalently two group of countries, each group made of

countries of the same size).

We fixed L, a vector of sizes normalized so that
∑n

i Li = 1, solve for the equilibrium wages
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Figure 5: Effects of Heterogeneous α’s on Per-Capita Income for Alternative Values of η.
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In the y-axis we plot the ratio of the long term real gdp levels for the countries with αL relative to those
with αH . We display the ratio of the α’s in the horizontal axis. Each curve corresponds to a different
value of the elasticity of substitution η. The rest of the parameters are n = 50, the growth rate is ν = 0.02
and the value of θ = 0.2. For each ratio of the α’s we chose the sum of them so that the balanced growth
rate is ν = 0.02.

w(L), and consider the per-capita world real consumption as a measure of productivity, i.e.:

c(L) =
∑
i

w(L)Li/p (w(L)) (28)

where p(w(L)) is the equilibrium common price level, which depends only on wages. We

compare the effect of variations on relative size (and hence wages) on the real per capita

world consumption both on impact and in the long run. For the impact effect we use that

the distribution of productivities is Frechet. For the long run effect, which takes into account

the effect on diffusion, we use the invariant distribution that solves equations (17) and (18).

Thus the interpretation of the experiment is that we start from a world with two countries of

the same size and compare the effects of “moving” people from one country to the other.18

The horizontal axis of Figure 6 has the ratio of the size of the countries, in log scale. The

vertical axis plots the real aggregate per capital world consumption, as defined in (28). We

18The computations of these examples are facilitated greatly by using the converse of Proposition 3 stated
and proven in the Online Appendix, so that we can actually compute the invariant distribution of productivity
for a given w and then find the vector L that supports the equilibrium with balanced trade.
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Figure 6: Effects of Heterogeneous Population Size’s on Per-Capita World Income for Alter-
native Values of η.
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The horizontal axis of Figure 6 has the ratio of the size of the countries, in log scale. The vertical axis
plots the real aggregate per capital world consumption, as defined in (28). We normalize c for the static
case to 1, and plots the log of this quantity. The solid line shows the impact effect, i.e., the effect when
we take as given the initial Frechet distribution. The growth rate is ν = 0.02 and the value of θ = 0.2,
and therefore, we set α = 0.05. We set Lsmall + Llarge = 1.

normalize c for the static case to 1, and plots the log of this quantity. The solid line shows

the impact effect, i.e., the effect when we take as given the initial Frechet distribution. As

shown in Alvarez and Lucas (2007), in this case the per-capita world consumption equals:

c(L) = λθ/(1+θ)
∑
i

L
1/(1+θ)
i .

Clearly this expression is maximized when Li/
∑

j Lj = 1/n, for all i. This is because we

assume that costs are independently distributed across locations, thus if one region has a

small share of the population it can only produce a small share of the products, and hence

requiring the more populous region to do it – which incidentally will be reflected in the

equilibrium value of relative wages.

Our interest is on the additional difference between the impact effect and the long run

effect. As explained in Proposition 11 there the effects are of second order for small change

in wages. For change of wages of 50 %, i.e. those changes that correspond to different of size
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of about 92%, we found that the extra effect of diffusion is of 15 percentage points.

6 Conclusions

We have proposed and studied a new theory of cross-country technology diffusion, constructed

by integrating two existing models: a static model of international trade based on the Ricar-

dian framework introduced by Eaton and Kortum (2002) and a stochastic-process model of

knowledge growth introduced in Kortum (1997) in which individuals get new ideas through

their interactions with others. The new feature that connects these two models is a selection

effect of international trade: Trade directly affects productivity levels by replacing inefficient

domestic producers with more efficient foreigners and so increasing every country’s contacts

with best-practice technologies around the world.

The theory implies a long-run equilibrium in which all economies share a common, con-

stant, endogenously determined growth rate, provided they are all connected in some degree

through trade. Differences in trade cost will induce differences in income levels but not, in

the long run, in rates of growth. This feature is shared with the von Neumann (1927) model

and with the Parente and Prescott (1994) model of “barriers to riches.” The transition dy-

namics following changes in trade costs, both world wide and by an individual country, are

illustrated through stylized numerical examples. These dynamics are a mixture of static gains

from trade that occur instantaneously under the trade model we use and gradual change that

results from to changes in the intellectual environment that trade brings to individual coun-

tries. Improvements in technology arise from interactions among people who are brought

together by the prospects of gains from trade and who get new ideas by adapting better

technologies currently used in other locations and/or in the production of other goods.

The model of this paper is general enough to support a fairly realistic calibration to the

world economy (as in Alvarez and Lucas (2007)) but our numerical illustrations here should

not be viewed as an attempt to do this. The trade shares in the figures are much larger than

those we observe. Adding a non-tradeables sector would remedy this, and would also reduce

the size of the jump in production that follows a trade liberalization, but we have not done

this. The model of technological change that we have adopted from Kortum (1997) is one of

many possibilities—see, for example, the ones explored in Lucas and Moll (2011)—and we

have not yet sought a parameterization that matches up to observations on actual catch-up

growth. These are but two of the many directions that would be interesting to pursue further.
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A Interpretation of the Continuous Time Limit

For some readers the continuous time law of motion of F (z, t) may seem odd, since for small

∆ there are a “fractional” number of meetings. Here we show that our limit as ∆ goes to

zero can be regarded as simply an “extrapolation” of the law of motion to all values of t,

with no change on the substance –provided the value of α is adjusted accordingly–, but with

a simpler mathematical formalization. To see this consider the following discrete time law of

motion for the right CDF of a closed economy:

F (z, j + 1) = F (z, j)F (z, j) = F (z, j)2, for all j = 0, 1, 2, 3, ...

where we are measuring time in units so that there is exactly one meeting per period. In this

case j is also the number of meetings since time zero. Continuing this way, and taking logs

logF (z, j + 1) = 2 logF (z, j) = 2j logF (z, 0)

If we now measure time t in natural units (say years) and we assume that there are α′

meetings per unit of time, we can write that j periods correspond to t = j/α′ (years) and

replacing in the previous expression

logF (z, j) = 2α
′t logF (z, 0)

Compare this with the continuous time limit we obtain in Section 2:19

logF (z, t) = eαt logF (z, 0)

Thus both expression for the law of motion give identical expression (on integers values of

t/α) if

log(2) = α/α′.

In other words, the continuous time value of α has to be smaller than the discrete time value

to take into account the ”compounding” effect of the meetings, but otherwise they give the

same answer.

19To be more precise, log F̃ (z, t) = logF (z, tα′) = eαt logF (z, 0) = eαt log F̃ (z, 0).
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B Additional Proofs

Proof of Proposition 3: To establish existence we show that the the excess demand system

satisfies i) Walras’ law, i.e.
∑n

i=1wiZi(w) = 0 for all w, ii) that the functions Z are continuous

and homogenous of degree zero in w, iii) that Z (w) are bounded from below, and iv) that

maxj Z(w)→∞ as w → w0 where w0 is on the boundary of the n dimensional simplex.

Part (i) follows from replacing pi in the expression for Zi, (ii) continuity is immediate

since the functions Fi are differentiable, and homogeneity is immediate by inspection of (12)

and (13). For (iii), we can take −maxj Lj to be the lower bound. For (iv) we assume, without

loss of generality, that 0 = w0
1 ≤ w0

2 ≤ · · · ≤ w0
n = 1, and show that Z1(w)→ +∞. For any

w we have

Z1(w)− L1

≥
(
wn
w1

)η (
wn

pn(w)

)1−η

Ln κ
η−1
n1

∫ ∞
0

z1−η
1 f1(z1)

∏
k 6=1

Fk

(
w1κnk
wkκn1

z1

)
dz1

Note that for all i we have

pi ≤ (wn/κin)

[∫ ∞
0

z1−ηfn(z) dz

]1/(1−η)

,

where the left hand side is the price that would be obtained by consumers in country i if they

restrict themselves to buy only from country n. Considering w = wr we have that wn/pn(w)

is uniformly bounded from above by the previous expression, setting i = n for all r large

enough since w0
n = 1. Finally, for any ε > 0, w1/wk ≤ 1− ε for all r large enough, and hence

Fk

(
w1κnk
wkκn1

z1

)
> 0 for all finite z1. Using that η > 1 and taking limits we obtain the desired

result. Given (i)-(iv), existence of an static trade equilibrium wage follows from Proposition

17.C.1 in Mas-Colell et al. (1995).

To establish the gross substitute property, since the excess demand system satisfies Wal-

ras’ law, it suffices to show that ∂Zi(w)/∂wr > 0 for all i, r = 1, ..., n and i 6= r. First notice

that pj(w) is increasing in each of the components of w and homogenous of degree one in w
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for all j. This implies that wr/pr(w) is increasing in wr. We have:

∂Zi(w)

∂wr
=

n∑
j=1,j 6=r

∂

∂wr

[(
wi

pj(w)

)−η
wj

pj(w)
Lj

]∫ ∞
0

(
zi
κji

)1−η

fi(zi)
∏
k 6=i

Fk

(
wi
wk

κik
κij

zi

)
dzi

+
n∑

j=1,j 6=r

(
wi

pj(w)

)−η
wj

pj(w)
Lj

∫ ∞
0

(
zi
κji

)1−η

fi(zi)
∏
k 6=i

∂

∂wr

[
Fk

(
wi
wk

κik
κij

zi

)]
dzi

+
∂

∂wr

[(
wi

pr(w)

)−η
wr

pr(w)
Lr

]∫ ∞
0

(
zi
κri

)1−η

fi(zi)
∏
k 6=i

Fk

(
wi
wk

κik
κir

zi

)
dzi

+

(
wi

pr(w)

)−η
wr

pr(w)
Lr

∫ ∞
0

(
zi
κri

)1−η

fi(zi)
∏
k 6=i

∂

∂wr

[
Fk

(
wi
wk

κik
κir

zi

)]
dzi

For j 6= r, using that η > 1 and pj(w) in increasing, we get ∂
∂wr

[(
wi

pj(w)

)−η
wj
pj(w)

Lj

]
> 0. For

j = r, using that η > 0, that wr/p(w) is decreasing in wr we get that ∂
∂wr

[(
wi

pr(w)

)−η
wr
pr(w)

Lr

]
>

0. For k = r 6= i we have that ∂
∂wr

[
Fk

(
wi
wk
zi

)]
> 0 since Fk is decreasing.

That wi/wj, relative wages of country i respect to any country j, are decreasing in Li,

follows from the strong gross substitute property. In particular, form an an application of

the Hick’s law of demand, since the excess demand of country i decreases with Li, while the

excess demand for any other country increases with Li, –see, for example, first corollary of

Theorem 3 in Quirk (1968). �

Proof of Proposition 8: Decomposing the time derivative of Fi((e
αntz)θ, t) in the usual

way, we have

dFi

((
e(ν/θ)tz

)θ
, t
)

dt
=

∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂z

d
(
e(ν/θ)tz

)θ
dt

+
∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂t

= (ν/θ) fi

((
e(ν/θ)tz

)θ
, t
)
θ
(
e(ν/θ)tz

)θ−1
e(ν/θ)tz

+
∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂t
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and so, dividing by Fi(
(
e(ν/θ)tz

)θ
, t) and applying (16) to the last term on the right,

d logFi

((
e(ν/θ)tz

)θ
, t
)

dt
=

(ν/θ) fi

((
e(ν/θ)tz

)θ
, t
)
θ
(
e(ν/θ)tz

)θ−1
e(ν/θ)tz

Fi

(
(e(ν/θ)tz)

θ
, t
)

+αi logGi

((
e(ν/θ)tz

)θ
, t
)
.

Let x = e(ν/θ)tz and multiplying through by x to obtain

d

dt

logFi(x
θ, t)

x−1
= (ν/θ)

fi(x
θ, t)θxθ+1

Fi(xθ, t)
+ αi

logGi(x
θ, t)

x−1
.

Now let x→∞

− d

dt
lim
x→∞

fi(x
θ, t)θxθ+1 = (ν/θ) lim

x→∞
fi(x

θ, t)θxθ+1 − αi lim
x→∞

gi(x
θ, t)θxθ+1,

where limx→∞
d
dt

logFi(x
θ,t)

x−1 = d
dt

limx→∞
logFi(x

θ,t)
x−1 since Fi(., .) is assumed to be twice continu-

ously differentiable. Reversing signs to conform to the definition of λi(t),

d

dt
λi(t) = − (ν/θ)λi(t) + αi

n∑
j=1

λj(t). (B.1)

Summing both sides over i we have

d

dt

n∑
i=1

λi(t) = − (ν/θ)
n∑
i=1

λi(t) +
n∑
i=1

αi

n∑
j=1

λj(t) = 0 ,

where the last equality uses the fact that ν = θ
∑n

i=1 αi. Then
∑

i λi(t) stays constant and

using the definition of λ∗i , (B.1) implies that

dλi(t)

dt
=

d (λi(t)− λ∗i )
dt

= − (ν/θ) (λi(t)− λ∗i )−
ν

θ
λ∗i + αi

n∑
j=1

λj(t)

= − (ν/θ) (λi(t)− λ∗i ) .

Integrating gives equation (26). �

Proof of Proposition 9: We first remind the reader that for the case of a Frechet distri-
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bution

Ĩij(K,w) =

(
wj
κij p̃i

)1−η

wiLi

∫ ∞
0

λj
θ
y−1+η−1/θ−1 exp

[
−

n∑
k=1

λk

(
wkκij
wjκik

)−1/θ

y−1/θ

]
dy

doing a change of variables

Ĩij(K,w) =

(
wj
κij

)−1/θ (
1

p̃i

)1−η

wiLi
λj[∑

k λk

(
κik
wk

)1/θ
]1+θ(1−η)

∫ ∞
0

tθ(1−η) exp [−t] dt.

Similarly for the price index,

p̃1−η
i =

∫∞
0
tθ(1−η) exp [−t] dt[∑

k λk

(
κik
wk

)1/θ
]1+θ(1−η)

n∑
s=1

λs

(
ws
κis

)−1/θ

.

Which implies

Ĩij(K,w) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi.

In the general case

Iij(K,w; η) =

(
wj
κij pi

)1−η

wiLi

∫ ∞
0

y−1+η fj(y)
∏
k 6=j

Fk

(
wkκij
wjκik

y

)
dy ,

=

(
wj
κij

)1−η

wiLi

∫∞
0
y−1+η fj(y)

∏
k 6=j Fk

(
wkκij
wjκik

y
)
dy∑s

s=1

(
ws
κis

)1−η ∫∞
0
y−1+η fs(y)

∏
k 6=j Fk

(
wkκis
wsκik

y
)
dy

where the second equality follows by substituting the expression for the price level.

Defining

I ij(z) = λj

(
wj
κij

)−1/θ

wiLi ×∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wjκik
wkκij

)1/θ

y−1/θ

]
Mij(y)dy

∑n
s=1 λs

(
ws
κis

)−1/θ ∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wsκik
wkκis

)1/θ

y−1/θ

]
Mis(y)dy
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where

Mij(z) =
fj(z)

∏
k 6=j Fk

(
wkκij
wjκik

z
)

λj
θ
z−1/θ+1e−λjz

−1/θ ∏
k 6=j e

−λk
(
wjκik
wkκij

)1/θ

z−1/θ

a function that converges to 1 as z → ∞ given our assumption on the behavior of fj.

Furthermore, notice that

lim
z→∞

∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wjκik
wkκij

)1/θ

y−1/θ

]
Mij(y)dy

∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wsκik
wkκis

)1/θ

y−1/θ

]
Mis(y)dy

= 1.

which implies

lim
η→1/θ+1

Iij(K,w, η) ≡ lim
z→∞

I ij(z) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi = Ĩi,j(K,w).

From this follows that the equilibrium wages are the same. The result for the ratio of price

levels follows a similar argument. Finally, the claim for the ratio of the real GDP follows

from the previous two results. �

C Multiple Locations per Country

In order to clarify the role of scale effects and the interpretation of countries of different

sizes we introduce the notion of a location within a country. We consider a world economy

consisting of n countries, where each country i contains mi locations. To simplify the analysis,

we assume that a country is defined by a set of locations satisfying the following conditions:20

1. within each country there is a common labor market across the mi locations;

2. there are no trading cost between locations within a country;

3. locations within a country face the same trading cost when trading with locations in

other countries.

20It is straightforward to extend the analysis to the case where labor is not mobile across location and there
are arbitrary transportation costs across locations. In this case an equilibrium is given by a wage vector of
dimension

∑n
i=1mi.
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Denoting by Li,l the labor force in location l of country i, we can write the labor force of

country i as

Li =

mi∑
l=1

Li,l. (C.1)

Since we assume that all locations within a country share the same labor market, there

is a unique wage wi for all location within a country. Likewise, given that there are no

transportation cost within a country and all locations within a country face the same trading

cost when trading with locations in other countries, all locations within a country face the

same prices for all goods.

Denoting by Fi,l(z, t) the distribution of cost in location l of country i, we can write the

distribution of best practices in country i as

Fi(z, t) =

mi∏
l=1

Fi,l(z, t). (C.2)

Notice that the right hand size of (C.2) is the distribution of the minimum labor requirement

over all locations within a country. This follows from the fact that all locations within a

country share the same wages, there is no transportation cost between location within a

country, and that all locations within a country share the same transportation cost vis-a-

vis all other countries. Thus, the distribution Fi(z, t) of cost of a country is all we need

to know to calculate a static trade equilibrium. In particular, given the distribution of

cost in each country and the size of the labor force of each country, Li, we can calculate a

static trade equilibrium as described in Section 3. In particular, the equilibrium values of

(wi(t), pi(t), Ci(t))i=1,...,n are only function of the (Fi(·, t), Li)i=1,...,n and independent of the

decomposition of countries into locations as long as equations (C.1) and (C.2) hold.

Assuming that the arrival rate of ideas in location l of country i equals αi,l, we can

aggregate the evolution of best practices of all locations in a country to obtain the law of

motion of best practices in country i:

mi∑
l=1

∂ log (Fi,l(z, t))

∂t
=

mi∑
l=1

αi,l log [Gi(z, t)]

or

∂ log (Fi(z, t))

∂t
= αi log [Gi(z, t)]

where αi =
∑mi

l=1 αi,l.
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Furthermore, assuming that countries are aggregates of different different number of sym-

metric locations in terms of their population and number of technology managers, Li,l = L

and αi,l = α, we have that countries of different size are obtained by scaling their population

Li = mi L and the arrival rate of ideas αi = mi α.

It should be also clear that, provided that the structure of transportation cost and labor

markets across locations is kept constant, an equilibrium of the model is invariant to arbitrary

division of locations into countries. For instance, a country with mi locations can be divided

into mi individual countries, each of them with a population of size L, receiving α ideas per

period, and having a distribution of best practices Fi,l(z, t) = (Fi(z, t))
1
mi .

We use the notion of locations to study the effect of changes in the arrival rate of product

diffusions of a single small open into this country’s output and welfare. To do so we first

consider a limit set-up where all countries are identical and very small. Then we let one of

these small economies to differ in its own meeting rate. Consider a sequence of worlds, each

one indexed by n. We split the world economy into n identical locations, so that each country

corresponds to one location, but where otherwise every other aspect of the world is kept the

same. In particular fix ᾱ, L̄ and a right cdf F̄ (z, t). Using our previous result, for each

world made of n countries let Li = L̄/n, αi = ᾱ/n and Fi(z, t) =
(
F̄ (z, t)

) 1
n for each country

i = 1, ..., n. Furthermore assume that κij = 1 for all i, j regardless of the number of countries

n. Clearly equilibrium wages are wi = 1 for every country in every world with n countries.

Moreover, for any n the stationary distribution of sellers, Γi in equation (18), is indepen-

dent of i and is given by the same Frechet distribution with shape parameter θ and scale

parameter λ derived from F̄ (·, 0). The common growth rate of each country is ν = ᾱθ for

every n. The case of n small open economies is obtained when we let n be very large, so that

each country i has negligible effect on common distribution Γ faced by each country. This

is the same concept used in section 8 of Alvarez and Lucas (2007) to study optimal tariff rates.

Remark 2. Consider n small open economies, for large n. Assume that country 1 has

α1 < ᾱ/n ≡ α2 = α3 = · · · = αn. Since each economy is very small, the stationary distri-

bution of sellers Γ in every country i is not affected by α1. Equations (17)-(18) implies that

the stationary distribution of country 1 is Frechet with the same shape parameter θ but with

scale parameter λ∗1 = (α1/αj)λ < λ = λ∗j , for j 6= 1. Relative GDP’s equals the relative λ′s

to the power θ/(1 + θ), and the relative λ′s equal the relative α′s. Moreover, we can study

the dynamics of the effect of a permanent change in α1 using Equation (26) from Proposition

8. Hence country’s 1 real income level converges to (α1/αj)
θ/(1+θ) at rate ν/θ = ᾱ for j 6= 1.
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Remark 2 and Corollary 2 give two different setups where relative meeting rates for

diffusion opportunities, i.e. relative α’s, determine exactly relative income levels.
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